
EMU 430- Data Analytics 2023 – 2024 Fall

Hacettepe University
Department of Industrial Engineering

Undergraduate Program
2023-2024 Fall

EMU 430 – Data Analytics
Week 10

December 8, 2023

Instructor: Erdi Dasdemir

edasdemir@hacettepe.edu.tr
www.erdidasdemir.com

mailto:edasdemir@hacettepe.edu.tr
http://www.erdidasdemir.com/

2/43

Outline

3/43

Acknowledgment

I drew inspiration primarily from Dr. Rafael Irizarry's "Introduction to Data Science" Book

and "Data Science" course by HarvardX on edX for the slides this week.

https:/rafalab.dfci.harvard.edu/dsbook-part-1/
https://www.edx.org/certificates/professional-certificate/harvardx-data-science

4/43
Data Wrangling Importing tidy combining

5/43

Introduction to Data Wrangling

o Data wrangling is the process of converting raw data into a usable form.

o The data sets used in this course until now were available as data frames: the US

murders data, the reported heights data, the Gapminder data…

o They are in the dslabs package, and we loaded them using the data function.

o The authors of these packages did quite a bit of work behind the scenes to get the

original raw data into the tidy tables we work with.

o Yet, this is not the case in real life.

Data Wrangling Importing tidy combining

6/43

o In a typical data science project, it is much more typical for the data to be in a file, a

database, or extracted from a document, including web pages, tweets, or PDF.

o In these cases, the first step is to import the data into R, and tidy up the data.

o The first step in the data analysis process usually involves converting data from its

raw form to the tidy form. We refer to this process as data wrangling.

Introduction to Data Wrangling

Data Wrangling Importing tidy combining

7/43

We will learn about common data-wrangling proocess.

➢ importing data into R from files,

➢ tidying data,

➢ string processing,

➢ HTML parsing,

➢ working with dates and times, and

➢ text mining.

Introduction to Data Wrangling

Data Wrangling Importing tidy combining

8/43
Data Wrangling Importing tidy combining

9/43

o A common way of storing and sharing data is through

electronic spreadsheets.

o Spreadsheet: a file version of a data frame, it has rows

and columns

o When creating spreadsheets that are text files,

o new row: return

o new column: predefined special character, the

most common ones comma, semicolon, white

space, tab

Example:

Importing Spreadsheets

Data Wrangling Importing tidy combining

10/43

o Note that the first row contains column names: header

o reading from a spreadsheet, it is important to know if
there is a header or not.

o Not all spreadsheet files are text files.

➢ For example, Google Sheets, is rendered on a
browser.

➢ Microsoft Excel (we can’t see it using a text editor)

Importing Spreadsheets

Data Wrangling Importing tidy combining

11/43

Reading a file that is already on our computer.

o In R, it is important to know your working directory. This is the directory in which R will

save or look for files by default.

o Get your working directory

getwd()

o Change your working directory

setwd()

If you are using RStudio, Session –> Set Working Directory.

Importing Spreadsheets Paths and Working Directory

Data Wrangling Importing tidy combining

12/43

➢ Important: One thing file reading functions have in common is that unless a full path is

provided, they search for files in the working directory.

➢ Recommendation: Create a directory for each analysis and keep the raw data files in that

directory. To make it more organized, create a data directory (folder) inside your project

directory.

➢ Example. dslabs package has a raw data files as example. To find their locations:

system.file("extdata", package = "dslabs")

Importing Spreadsheets Paths and Working Directory

Data Wrangling Importing tidy combining

13/43

readr and readxl are the tidyverse libraries that include functions for reading data

stored in spreadsheets into R.

library(readr)

library(readxl)

Importing Spreadsheets readr and readxl packages

Data Wrangling Importing tidy combining

14/43

readr

Importing Spreadsheets readr and readxl packages

base R functions to import data

➢ read.table

➢ read.csv

➢ read.delim

Data Wrangling Importing tidy combining

15/43

readxl

Importing Spreadsheets readr and readxl packages

Data Wrangling Importing tidy combining

16/43

Importing Spreadsheets Download from Internet

We can import or download data files from web

Example: dslabs package is on GitHub

We can download murders.csv using

url <-

"https://raw.githubusercontent.com/rafalab/dslabs/master/inst/e

xtdata/murders.csv"

dat <- read_csv(url)

Data Wrangling Importing tidy combining

17/43

Importing Spreadsheets Download from Internet

To download a local copy:

➢ download.file(url, "murders.csv")

Two functions that are sometimes useful when downloading data from the internet are

➢ tempdir(): creates a directory with a name that is unique.

➢ tempfile(): a character string, not a file, that is likely to be a unique file name;

➢ Download file –> give it a temporary name, read it in it, process it if needed, and then erase the file

tmp_filename <- tempfile()

download.file(url, tmp_filename)

dat <- read.csv(tmp_filename)

file.remove(tmp_filename)

Data Wrangling Importing tidy combining

18/43
Data Wrangling Importing tidy combining

19/43

Example: Remember South Korea and Germany example

Once the data is proper we can use our dplyr and ggplot functions easily.

data("gapminder")

tidy_data <- gapminder %>% filter(country %in% c("South Korea",

"Germany")) %>% select(country, year, fertility)

head(tidy_data)

tidy_data %>% ggplot(aes(year, fertility, color = country)) +

geom_point()

tidy your data

Data Wrangling Importing tidy combining

20/43

o One reason the code worked seamlessly is that the data is tidy.

o Each point in the plot is represented by a row in the table.

o tidy data: each row represents one observation and the columns represent the

different variables that we have data on for those observations.

tidy your data

Data Wrangling Importing tidy combining

21/43

Example, let’s go to the original raw version of this data file.

path <- system.file("extdata", package="dslabs")

filename <- file.path(path, "fertility-two-countries-example.csv")

wide_data <- read_csv(filename)

wide_data %>% select(country, '1960':'1967')

The data is in a wide format.

tidy your data

Data Wrangling Importing tidy combining

22/43

Wide Format (compared to Tidy format)

➢ each row includes several observations

➢ one of the variables is stored in the header

➢ ggplot does not work with wide format → we need to wrangle it to tidy format

➢ tidyr package (included in tidyverse library)

tidy your data

Data Wrangling Importing tidy combining

23/43

gather(): converts wide data into tidy data

help("gather")

➢ default version gathers all columns, therefore we need to specify the columns.

➢ we want to gather columns 1960 …. 2015

new_tidy_data <- wide_data %>% gather(key = year, value =

fertility,'1960':'2015')

new_tidy_data2 <- gather(data = wide_data, key = year, value =

fertility,'1960':'2015')

head(new_tidy_data)

tidy your data tidyr package

Data Wrangling Importing tidy combining

24/43

gather(): converts wide data into tidy data

➢ we want to gather columns 1960 …. 2015

➢ another way to do this is

➢ new_tidy_data <- wide_data %>% gather(year, fertility, -

country)

➢ head(new_tidy_data)

tidy your data tidyr package

Data Wrangling Importing tidy combining

25/43

here is another issue: gather function assumes column names are characters

class(tidy_data$year)

[1] "integer"

class(new_tidy_data$year)

[1] "character“

we can use as.numeric() but gather as an argument for this.

new_tidy_data <- wide_data %>% gather(year, fertility, -

country, convert= TRUE)

head(new_tidy_data)

tidy your data tidyr package

Data Wrangling Importing tidy combining

26/43

here is another issue: gather function assumes column names are characters

class(tidy_data$year)

[1] "integer"

class(new_tidy_data$year)

[1] "character“

gather has an argument for this.

new_tidy_data <- wide_data %>% gather(year, fertility, -country, convert=

TRUE)

class(new_tidy_data$year)

new_tidy_data %>% ggplot(aes(year, fertility, color = country)) +

geom_point()

tidy your data tidyr package

Data Wrangling Importing tidy combining

27/43

spread() function

inverse of gather()

help(spread)

new_wide_data <- new_tidy_data %>% spread(key = year, value = fertility)

select(new_wide_data, country, '1960':'1967')

tidy your data tidyr package

Data Wrangling Importing tidy combining

28/43

tidy your data tidyr package

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

Data Wrangling Importing tidy combining

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

29/43

path <- system.file("extdata", package="dslabs")

filename <- file.path(path, "life-expectancy-and-fertility-two-countries-

example.csv")

raw_dat <- read_csv(filename)

select(raw_dat, 1:5)

We will not use column name “year” as the new column name as they also include type information.

dat <- raw_dat %>% gather(key, value, -country)

head(dat)

Encoding multiple variables in a column name is a common problem. Hence, readr() has a function for
this: separate()

help(separate)

dat %>% separate(key, c("year","variable_name"), "_")

tidy your data Example Case

Data Wrangling Importing tidy combining

30/43

path <- system.file("extdata", package="dslabs")

filename <- file.path(path, "life-expectancy-and-fertility-two-countries-

example.csv")

raw_dat <- read_csv(filename)

select(raw_dat, 1:5)

We will not use column name “year” as the new column name as they also include type information.

dat <- raw_dat %>% gather(key, value, -country)

head(dat)

Encoding multiple variables in a column name is a common problem. Hence, readr() has a function for
this: separate()

help(separate)

dat %>% separate(key, c("year","variable_name"), "_")

tidy your data Example Case

Data Wrangling Importing tidy combining

31/43

We are having a problem here. See the warning. “life_expectancy” is converted as “life”, as “_” is the

separator.

Solution: extra = "merge“ argument

dat %>% separate(key, c("year","variable_name"), "_", extra = "merge")

Convert to wide format:

dat %>% separate(key, c("year","variable_name"), "_", extra = "merge")%>%

spread(variable_name, value) # creaates column for each variable

tidy your data Example Case

Data Wrangling Importing tidy combining

32/43
Data Wrangling Importing tidy combining

33/43

Combining Tables

We may have multiple data files.

Example: We want to investigate the relationship between population and electoral votes. These are in different

data sets.

data(murders)

head(murders)

data(polls_us_election_2016)

head(polls_us_election_2016)

The order of states is different in the two tables. We cannot simply put them together using column binding.

identical(results_us_election_2016$state, murders$state)

Data Wrangling Importing tidy combining

34/43

Combining Tables join functions

These are functions from dplyr package:

based on SQL joins.

left_join

help("left_join")

tab <- left_join(murders,

results_us_election_2016, by =

"state")

head(tab)

Data Wrangling Importing tidy combining

35/43

Combining Tables join functions

We can now make a plot to see the relationship

library(ggrepel)

tab %>% ggplot(aes(population/10^6,

electoral_votes, label = abb)) +

geom_point() + geom_text_repel() +

scale_x_continuous(trans = "log2") +

scale_y_continuous(trans = "log2") +

geom_smooth(method = "lm", se = FALSE)

Data Wrangling Importing tidy combining

36/43

Combining Tables join functions

o In real-life, it is not always the case that each row in one table has a matching row in the
other.

Example:

results_us_election_2016 <- results_us_election_2016 %>%

arrange(state)

tab1 <- slice(murders, 1:6) %>% select(state, population)

tab1

tab2 <- slice(results_us_election_2016, c(1:3, 5, 7:8)) %>%

select(state, electoral_votes)

tab2

Data Wrangling Importing tidy combining

37/43

Combining Tables join functions

left join

left_join(tab1, tab2)

right join

right_join(tab1, tab2)

keep only the rows that have

information in both tables

inner join

inner_join(tab1, tab2) # intersection

keep all rows and assign NAs

full_join(tab1, tab2)

Data Wrangling Importing tidy combining

38/43

Combining Tables join functions

semi_join keeps the part of the

first table for which we have

information in the second.

semi_join(tab1, tab2)

anti_join keeps the part of first

table for which we have no information

in the second.

anti_join(tab1, tab2)

Data Wrangling Importing tidy combining

39/43

Combining Tables join functions

Data Wrangling with dplyr
and tidyr Cheat Sheet

Data Wrangling Importing tidy combining

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

40/43

Combining Tables binding functions

dplyr has bind_cols(): binds two objects by putting the columns of each
together in a tibble

bind_cols(a = 1:3, b = 4:6)

cbind(a = 1:3, b = 4:6)

default R column binding creates objects (data frames) rather than tibbles.

Data Wrangling Importing tidy combining

41/43

Combining Tables binding functions

We can bind data frames too

tab1 <- tab[, 1:3]

tab2 <- tab[, 4:6]

tab3 <- tab[, 7:9]

new_tab <-

bind_cols(tab1, tab2,

tab3)

head(new_tab)

Data Wrangling Importing tidy combining

42/43

Combining Tables binding functions

bind_rows() is similar but binds

rows

tab1 <- tab[1:2,]

tab2 <- tab[3:4,]

bind_rows(tab1, tab2)

rbind(tab1, tab2)

Data Wrangling Importing tidy combining

43/43

Combining Tables set functions

tab1 <- tab[1:5,]

tab2 <- tab[3:7,]

intersect(tab1, tab2) #

intersecting rows

tab1 <- tab[1:5,]

tab2 <- tab[3:7,]

union(tab1, tab2) # union

rows

tab1 <- tab[1:5,]

tab2 <- tab[3:7,]

setdiff(tab1, tab2) #

setdiff()

Data Wrangling Importing tidy combining

