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Introduction to Data Wrangling 

o Data wrangling is the process of converting raw data into a usable form.

o Data sets are not tidy in real life.

o import the data into R→ tidy up the data→ start analysis
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We will learn about common data-wrangling proocess.

➢ importing data into R from files,

➢ tidying data,

➢ string processing,

➢ HTML parsing,

➢ working with dates and times, and

➢ text mining.

Introduction to Data Wrangling 
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Reading a file that is already on our computer.

o In R, it is important to know your working directory. This is the directory in which R will 

save or look for files by default.

o Get your working directory

getwd()

o Change your working directory

setwd()

If you are using RStudio, Session –> Set Working Directory.

Importing Spreadsheets Paths and Working Directory

Data 
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➢ Important: One thing file reading functions have in common is that unless a full path is 

provided, they search for files in the working directory.

➢ Recommendation: Create a directory for each analysis and keep the raw data files in that 

directory. To make it more organized, create a data directory (folder) inside your project 

directory.

➢ Example. dslabs package has a raw data files as example. To find their locations:

system.file("extdata", package = "dslabs")

Importing Spreadsheets Paths and Working Directory

Data 
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readr and readxl are the tidyverse libraries that include functions for reading data

stored in spreadsheets into R.

library(readr)

library(readxl)

Importing Spreadsheets readr and readxl packages

Data 
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readr

Importing Spreadsheets readr and readxl packages

base R functions to import data

➢ read.table

➢ read.csv

➢ read.delim

Data 
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readxl

Importing Spreadsheets readr and readxl packages
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Importing Spreadsheets Download from Internet

We can import or download data files from web

url <-

"https://raw.githubusercontent.com/rafalab/dslabs/master/inst/extdata/murde

rs.csv"

To read murders.csv from web: dat <- read_csv(url)

To download a local copy and read it:

➢ download.file(url, "murders.csv")

➢ dat <- read_csv("murders.csv"))

Data 
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tidy data: each row represents one observation and the columns represent the different variables that we 

have data on for those observations.

Example: Remember South Korea and Germany example

Once the data is proper we can use our dplyr and ggplot functions easily.

data("gapminder")

tidy_data <- gapminder %>% filter(country %in% c("South Korea", "Germany")) %>%

select(country, year, fertility)

head(tidy_data)

tidy_data %>% ggplot(aes(year, fertility, color = country)) + geom_point()

tidy your data

Data 
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Example, let’s go to the original raw version of this data file.

path <- system.file("extdata", package="dslabs")

filename <- file.path(path, "fertility-two-countries-example.csv")

wide_data <- read_csv(filename) 

wide_data %>% select(country, '1960':'1967')

The data is in a wide format.

tidy your data

Data 
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Wide Format (compared to Tidy format)

➢ each row includes several observations

➢ one of the variables is stored in the header

➢ ggplot does not work with wide format → we need to wrangle it to tidy format

➢ tidyr package (included in tidyverse library)

tidy your data

Data 
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gather(): converts wide data into tidy data

help("gather")

➢ default version gathers all columns, therefore we need to specify the columns.

➢ we want to gather columns 1960 …. 2015

new_tidy_data <- wide_data %>% gather(key = year, value =

fertility,'1960':'2015')

new_tidy_data2 <- gather(data = wide_data, key = year, value =

fertility,'1960':'2015')

head(new_tidy_data)

tidy your data tidyr package 

Data 
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New Updates

1. pivot_longer() is an updated approach to gather(), designed to be both simpler to use 

and to handle more use cases. We recommend you use pivot_longer() for new code; 

gather() isn't going away but is no longer under active development.

2. R 4.1.0 introduced a native pipe operator, |>. The behaviour of the native pipe is by and large

the same as that of the %>% pipe provided by the magrittr package. 

tidy your data

Data 
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pivot_longer(): converts wide data into tidy data

help(“pivot_longer")

➢ we want to gather columns 1960 …. 2015

new_tidy_data <- wide_data |> pivot_longer('1960':'2015’, names_to =

“year”, values_to = “fertility”)

or

new_tidy_data <- wide_data |> pivot_longer(-country, names_to =

“year”, values_to = “fertility”)

head(new_tidy_data)

tidy your data tidyr package 

Data 
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here is another issue: pivot_longer function assumes column names are characters

class(tidy_data$year)

[1] "integer"

class(new_tidy_data$year)

[1] "character“

we can use as.numeric() but gather as an argument for this.

new_tidy_data <- wide_data |> pivot_longer(-country, names_to = “year”,

values_to = “fertility”) |> mutate(year = as.integer(year))

head(new_tidy_data)

tidy your data tidyr package 

Data 
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spread() function

inverse of gather()

help(spread)

new_wide_data <- new_tidy_data %>% spread(key = year, value = fertility)

select(new_wide_data, country, '1960':'1967')

tidy your data tidyr package 

Data 
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pivot_wider() function

inverse of gather()

help(spread)

new_wide_data <- new_tidy_data |> spread(names_from = year, values_from =

fertility)

select(new_wide_data, country, '1960':'1967')

tidy your data tidyr package 

Data 
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tidy your data tidyr package 

https://raw.githubusercontent.com/rstudio/cheatsheets/main/tidyr.pdf

Data 
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path <- system.file("extdata", package="dslabs")

filename <- file.path(path, "life-expectancy-and-fertility-two-countries-

example.csv")

raw_dat <- read_csv(filename)

select(raw_dat, 1:5)

We will not use column name “year” as the new column name as they also include type information.

dat <- raw_dat %>% pivot_longer(-country)

head(dat)

Encoding multiple variables in a column name is a common problem. Hence, readr() has a function for 
this: separate()

dat %>% separate_wider_delim(name, delim = "_", names = 

"year","name"), too_many = “merge")

tidy your data Example Case

Data 
Wrangling
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Convert to wide format:

dat %>% pivot_wider() # creaates column for each variable

tidy your data Example Case

Data 
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Combining Tables

We may have multiple data files.

Example: We want to investigate the relationship between population and electoral votes. These are in different 

data sets.

data(murders)

head(murders)

results_us_election_2016

murders

The order of states is different in the two tables. We cannot simply put them together using column binding.

identical(results_us_election_2016$state, murders$state)

Data 
Wrangling
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Combining Tables join functions

These are functions from dplyr package: 

based on SQL joins.

left_join

help("left_join")

tab <- left_join(murders, 

results_us_election_2016, by =

"state")

head(tab)

Data 
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Combining Tables join functions

We can now make a plot to see the relationship

library(ggrepel)

tab %>% ggplot(aes(population/10^6, 

electoral_votes, label = abb)) +

geom_point() + geom_text_repel() +

scale_x_continuous(trans = "log2") +

scale_y_continuous(trans = "log2") +

geom_smooth(method = "lm", se = FALSE)

Data 
Wrangling
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Combining Tables join functions

o In real-life, it is not always the case that each row in one table has a matching row in the 
other.

Example:

results_us_election_2016 <- results_us_election_2016 %>%

arrange(state)

tab1 <- slice(murders, 1:6) %>% select(state, population)

tab1

tab2 <- slice(results_us_election_2016, c(1:3, 5, 7:8)) %>%

select(state, electoral_votes)

tab2

Data 
Wrangling
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Combining Tables join functions

# left join

left_join(tab1, tab2)

# right join

right_join(tab1, tab2)

# keep only the rows that have 

information in both tables

# inner join

inner_join(tab1, tab2) # intersection

# keep all rows and assign NAs

full_join(tab1, tab2)

Data 
Wrangling
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Combining Tables join functions

# semi_join keeps the part of the 

first table for which we have 

information in the second.

semi_join(tab1, tab2)

# anti_join keeps the part of first 

table for which we have no information 

in the second.

anti_join(tab1, tab2)

Data 
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Combining Tables join functions

Data Wrangling with dplyr
and tidyr Cheat Sheet

Data 
Wrangling
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36/65

Combining Tables binding functions

dplyr has bind_cols(): binds two objects by putting the columns of each 
together in a tibble

bind_cols(a = 1:3, b = 4:6)

cbind(a = 1:3, b = 4:6) 

default R column binding creates objects (data frames) rather than tibbles.

Data 
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Combining Tables binding functions

We can bind data frames too

tab1 <- tab[, 1:3]

tab2 <- tab[, 4:6]

tab3 <- tab[, 7:9]

new_tab <-

bind_cols(tab1, tab2, 

tab3)

head(new_tab)

Data 
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Combining Tables binding functions

bind_rows() is similar but binds 

rows

tab1 <- tab[1:2, ]

tab2 <- tab[3:4, ]

bind_rows(tab1, tab2)

rbind(tab1, tab2)

Data 
Wrangling
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Combining Tables set functions

tab1 <- tab[1:5, ]

tab2 <- tab[3:7, ]

intersect(tab1, tab2) # 

intersecting rows

tab1 <- tab[1:5, ]

tab2 <- tab[3:7, ]

union(tab1, tab2) # union 

rows

tab1 <- tab[1:5, ]

tab2 <- tab[3:7, ]

setdiff(tab1, tab2) # 

setdiff()

Data 
Wrangling
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Combining Tables set functions

v1 <- c(1:5)

v2 <- c(5:1)

v3 <- c(1:6)

setequal(v1, v2)

TRUE

setequal(v1, v3)

FALSE

Data 
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Web Scrapping

o The data we need to answer questions are not always in a spreadsheet ready for us to read.

o For example, the US murders data set orinally came from this Wikipedia page:

o Wikipedia Page: Murder in the United States by state

o Web scraping or web harvesting are the terms used to describe the process of extracting data from a 

website.

o We can do this is because the information from web pages to our browsers are received as text from a server.

.

Data 
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Web Scrapping

o A webpage is a computer code written in HyperText Markup Language or HTML.

o To see the code for a web page, you can actually visit the page on your browser and then view the code.

o Different browsers have different ways of doing this. In Chrome you can click on View Source to see it.

o Because the code is accessible, we can download the HTML files, import it into R, and then write programs to 

extract the information we need from the page.

Data 
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Web Scrapping

o Once we look at HTML code, this might seem like a difficult task.

o Fortunately, there are convenient tools to facilitate the process.

o Lets look at the source code and search Alabama. 

o We can see the data and the pattern that the data is defined with.

o If you know HTML, you know what these patterns are, and you can leverage this knowledge to extract what 
we need.

o We can also take advantage of a language widely used to make web pages look pretty called Cascading Style 
Sheets, or CSS.

Data 
Wrangling
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Web Scrapping

o Although we will learn about the tools that make it possible to scrape data without knowing HTML, for data 

scientists, it is quite useful to learn some HTML and some CSS.

o Useful courses for web design and development

Data 
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Web Scrapping rvest package

o We will use rvest package for web scraping.

o It is part of the tidyverse.

o The first step using this package is to import the web page into R:

library(rvest) 

url <-

"https://en.wikipedia.org/w/index.php?title=Gun_violence_in_the_United_Stat

es_by_state&direction=prev&oldid=810166167"  

data_html <- read_html(url)  

class(data_html)

Data 
Wrangling
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Web Scrapping rvest package XML

XML: General Markup Language

o The rvest package is actually more general. It handles XML documents, not just HTML documents.

o XML can be used to represent any kind of data.

o HTML is a specific type of XML, specifically developed for representing web pages.

Data 
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Web Scrapping rvest package

Extracting Information

o We know that the information is store in an HTML table (refer to source code).

o In HTML, information is stored inside nodes < >

For example, 

o <td> 348 </td>

o <p><strong>Hi, I’m Aykut. I’m third year Industrial Engineering Student 

at Hacettepe University.</strong></p>

o rvest package has functions to extract nodes from HTML documents.

Data 
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Web Scrapping Extracting Information

o We know that the information is store in an HTML table (refer to source code).

o In HTML, information is stored inside nodes < >

For example, 

o <td> 348 </td>

o <p><strong>Hi, I’m Aykut. I’m third year Industrial Engineering Student 

at Hacettepe University.</strong></p>

o rvest package has functions to extract nodes from HTML documents.

Data 
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Web Scrapping CSS Selectors

o The default look of a webpage made with the most basic HTML is quite unattractive.

o The aesthetically pleasing pages we see today are made using CSS

o The general way these CSS files work is by defining how each of the elements of a
webpage will look.

o CSS does this by leveraging patterns used to define these elements, referred to
as selectors. An example of such a pattern, which we used above, is table, but there are
many, many more.

o If we want to grab data from a webpage and we happen to know a selector that is unique
to the part of the page containing this data, we can use the html_nodes function.

o However, knowing which selector can be quite complicated.

Data 
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Web Scrapping CSS Selectors

o SelectorGadget is piece of software that allows you to interactively determine what CSS selector you need 

to extract specific components from the webpage.

o A Chrome extension is available which permits you to turn on the gadget and then, as you click through the 

page, it highlights parts and shows you the selector you need to extract these parts.

Demos:

o https://rvest.tidyverse.org/articles/selectorgadget.html

o https://www.analyticsvidhya.com/blog/2017/03/beginners-guide-on-web-scraping-in-r-using-rvest-with-

hands-on-knowledge/
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Web Scrapping

library(rvest) 

url <-

"https://en.wikipedia.org/w/index.php?title=Gun_violence_in_the_United_Stat

es_by_state&direction=prev&oldid=810166167"  

data_html <- read_html(url)  

class(data_html)

tab <- data_html |> html_nodes("table")

tab <- tab[[1]] |> html_table()

tab <- tab |> setNames(c("state", "population", "total", "murder_rate")) 

head(tab)
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Web Scrapping JSON

o Sharing data on the internet has become more and more 

common.

o There are some standards that are also becoming more common.

o Currently, a format that is widely being adopted is the JavaScript 

Object Notation or JSON.
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Web Scrapping JSON

jsonlite package

We can use the function fromJSON from the jsonlite package to read JSON files.

Note that JSON files are often made available via the internet.

Several organizations provide a JSON API or a web service that you can connect directly to and obtain data.

Data 
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Web Scrapping JSON

jsonlite package

Here is an example providing information Nobel prize winners:

library(jsonlite) 

library(dplyr) 

nobel <- fromJSON("http://api.nobelprize.org/v1/prize.json")  

nobel$prizes %>% .$category

nobel$prizes %>% .$year

nobel$prizes %>% filter(category == "literature" & year == "1971") %>%

pull(laureates) %>% first() %>% select(id, firstname, surname)  

id firstname surname

You can learn much more by examining tutorials and help files for jsonlite and rjason packages.
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Web Scrapping Data APIs

o An Application Programming Interface (API) is a set of rules and protocols that allows

different software entities to communicate with each other.

o It defines methods and data formats that software components should use when

requesting and exchanging information.

o APIs play a crucial role in enabling the integration that make today’s software so

interconnected and versatile.
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Web Scrapping Data APIs

o There are several types of APIs. The main ones related to retrieving data are:

➢ Web Services - Often built using protocols like HTTP/HTTPS. Commonly used to enable applications to communicate with 

each other over the web. For instance, a weather application for a smartphone may use a web API to request weather 

data from a remote server.

➢ Database APIs - Enable communication between an application and a database, SQL-based calls for example.

Data 
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Web Scrapping Data APIs

Key concepts associated with APIs:

➢ Endpoints: Specific functions available through the API. For web APIs, an endpoint is usually a specific URL where the API 

can be accessed.

➢ Methods: Actions that can be performed. In web APIs, these often correspond to HTTP methods like GET, POST, PUT, or 

DELETE.

➢ Requests and Responses: The act of asking the API to perform its function is a request. The data it returns is the response.

➢ Rate Limits: Restrictions on how often you can call the API, often used to prevent abuse or overloading of the service.

➢ Authentication and Authorization: Mechanisms to ensure that only approved users or applications can use the API. 

Common methods include API keys, OAuth, or Jason Web Tokens (JWT).

➢ Data Formats: Many web APIs exchange data in a specific format, often JSON or CSV.

Data 
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Web Scrapping httr2 package

o HTTP: Hyper-Text Transfer Protocol

➢ HTTP is the most widely used protocol for data sharing through the internet.

➢ The httr2 package provides functions to work with HTTP requests.

➢ One of the core functions in this package is request, which is used to form request to send to web services.

➢ The req_perform function sends the request.

➢ This request function forms an HTTP GET request to the specified URL.

Data 
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Web Scrapping httr2 package

o HTTP: Hyper-Text Transfer Protocol

➢ Typically, HTTP GET requests are used to retrieve information from a server based on the provided URL.

➢ The function returns an object of class response.

➢ This object contains all the details of the server’s response, including status code, headers, and content.

➢ You can then use other httr2 functions to extract or interpret information from this response.

Data 
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Web Scrapping httr2 package

Example:
Let’s say you want to retrieve COVID-19 deaths by state from the CDC. By visiting their data catalog you can search for datasets
and find that the data is provided through this API:

https://data.cdc.gov/

# install.packages("httr2") 

library(httr2) 

library(readr) 

library(jsonlite)  

url <- "https://data.cdc.gov/resource/r8kw-7aab.json"

response <- request(url) |> req_perform() 

tab <- response |> resp_body_string() |> fromJSON(flatten=TRUE)  

# increase return limit 

response <- request(url) |> req_url_path_append("?$limit=100000") |> req_perform()

tab <- response |> resp_body_string() |> fromJSON(flatten = TRUE) 

When working with APIs, it’s essential to check the API’s documentation for rate limits, required headers, or authentication 
methods.
The httr2package provides tools to handle these requirements, such as setting headers or authentication parameters.
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Web Scrapping httr2 package

o When working with APIs, it’s essential to check the API’s documentation for rate limits, 

required headers, or authentication methods.

o The httr2 package provides tools to handle these requirements, such as setting headers 

or authentication parameters.
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