
EMU 430- Data Analytics 2023 – 2024 Fall

Hacettepe University
Department of Industrial Engineering

Undergraduate Program
2023-2024 Fall

EMU 430 – Data Analytics
Week 13

December 29, 2023

Instructor: Erdi Dasdemir

edasdemir@hacettepe.edu.tr
www.erdidasdemir.com

mailto:edasdemir@hacettepe.edu.tr
http://www.erdidasdemir.com/

Outline

Acknowledgment

I drew inspiration primarily from Dr. Rafael Irizarry's "Introduction to Data Science" Book

and "Data Science" course by HarvardX on edX for the slides this week.

https:/rafalab.dfci.harvard.edu/dsbook-part-1/
https://www.edx.org/certificates/professional-certificate/harvardx-data-science

4/34
String Processing stringr regex

5/34

String Processing

Common challenges in data wrangling are

➢ extracting numeric data contained in character strings,

➢ processing unorganized text into meaningful variable names or categorical variables.

Remember web scraping murders’ data set. If you check the classes of population and total, you will see that

they are character.

String Processing stringr regex

6/34

String Processing

library(rvest)

library(tidyverse)

url <-

"https://en.wikipedia.org/w/index.php?title=Gun_violence_in_the_United_States_by_sta

te&direction=prev&oldid=810166167"

data_html <- read_html(url)

class(data_html)

[1] "xml_document" "xml_node"

tab <- data_html |> html_nodes("table")

tab <- tab[[1]]

tab <- tab |> html_table()

murders_raw <- tab |> setNames(c("state", "population", "total", "murder_rate"))

class(murders_raw$population)

[1] "character"

class(murders_raw$total)

[1] "character"

String Processing stringr regex

7/34

String Processing

o This is very common web scraping, since web pages and other formal documents use commas in numbers to

improve readability.

o String processing challenges a data scientist faces are unique and often unexpected.

o It is not possible to cover everything but we will try to learn how to approach some of the common tasks:

➢ removing unwanted characters from text

➢ extracting numerical values from texts

➢ finding and replacing characters

➢ extracting specific parts of strings

➢ converting free-form text to more uniform formats

➢ splitting strings into multiple values.

String Processing stringr regex

8/34

String Processing Escaping

To define strings in R, we can use either double quotes or single quotes:

my_favorite_course <- "emu430"

my_favorite_course <- 'emu430’

Now, what happens if the string we want to define includes double quotes? For example, if we want to write

emu430's students or 10"?

We can use escaping with the backslash /.

emu430's students

10"

Escaping characters is something we often have to use when processing strings.

String Processing stringr regex

9/34
String Processing stringr regex

10/34

String Processing stringr

o In general, string processing involves a string and a pattern.

murders_raw$population[1:3]

[1] "4,853,875" "737,709" "6,817,565"

as.numeric(murders_raw$population[1:3])

[1] NA NA NA

o This is because of the commas. The string processing we want to do here is to remove the pattern comma

from.

o We need to locate the comma and replace them with an empty character.

String Processing stringr regex

11/34

String Processing stringr

o Base R includes function to perform all

these tasks.

o They don’t follow a unifying convention,

which makes it a bit hard to memorize and

use.

o The stringr package basically repackages

this functionality, but using a more

consistent approach of naming functions

stringr Task Description Base R

str_detect Detect Is the pattern in the
string?

grepl

str_which Detect Returns the index of
entries that contain the
pattern.

grep

str_subset Detect Returns the subset of
strings that contain the
pattern.

grep with
value =

TRUE

str_locate Locate Returns positions of
first occurrence of the
pattern in a string.

regexpr

str_locate

_all

Locate Returns position of all
occurrences of the
pattern in a string.

gregexp

r

String Processing stringr regex

12/34

String Processing stringr

o In general, string processing involves a string and a pattern.

murders_raw$population[1:3]

[1] "4,853,875" "737,709" "6,817,565"

as.numeric(murders_raw$population[1:3])

[1] NA NA NA

o This is because of the commas. The string processing we want to do here is to remove the pattern comma

from.

o We need to locate the comma and replace them with an empty character.

String Processing stringr regex

13/34

String Processing stringr

In stringr, Functions start with str_, which means that type it and then hit Tab on keyboard,

murders_raw$population[1:3]

as.numeric(murders_raw$population[1:3])

murders_raw$population |> str_detect(",")

murders_raw$population |> str_replace_all(",", "") |> as.numeric()

as.numeric(str_replace_all(murders_raw$population,",", ""))

#as this operation is so common, there is a function in readr package:

parse_number(murders_raw$population)

String Processing stringr regex

14/34
String Processing stringr regex

15/34

String Processing heigts data

The dslabs package includes the raw data from which the heights dataset was obtained
These heights were obtained using a web form in which students were asked to enter their heights.

library(dslabs)

head(reported_heights)

class(reported_heights$height)

if we try to parse it into numbers, we get a warning:

x <- as.numeric(reported_heights$height)

we also do end up with many NAs:

sum(is.na(x))

Here are some of the entries that are not successfully converted:

reported_heights |>

mutate(new_height = as.numeric(height)) |>

filter(is.na(new_height)) |>

head(n = 10)

String Processing stringr regex

16/34

String Processing heigts data

o For example, in the output above, we see various cases that use the format x'y" or x'y'' with x and y

representing feet and inches, respectively.

o We can find the number of problematic entries:

problems <- reported_heights |>

mutate(inches = suppressWarnings(as.numeric(height))) |>

filter(is.na(inches) | inches < 50 | inches > 84) |>

pull(height)

length(problems)

50 inches is 127 centimeters

84 inches to 213.36 centimeters

this is the range that that covers about 99.9999% of the adult population

String Processing stringr regex

17/34

String Processing heigts data

Problematic patterns:

1. A pattern of the form x'y or x' y'' or x'y" with x and y representing feet and inches, respectively. Here

are ten examples:

#> 5' 4" 5'7 5'7" 5'3" 5'11 5'9'' 5'10'' 5' 10 5'5" 5'2"

2. A pattern of the form x.y or x,y with x feet and y inches. Here are ten examples:

#> 5.3 5.5 6.5 5.8 5.6 5,3 5.9 6,8 5.5 6.2

3. Entries that were reported in centimeters rather than inches. Here are ten examples:

#> 150 175 177 178 163 175 178 165 165 180

String Processing stringr regex

18/34

String Processing Regular Expressions

o A regular expression (regex) is a way to describe specific patterns of characters of text.

o They can be used to determine if a given string matches the pattern.

o Some tutorials:

➢ https://www.regular-expressions.info/tutorial.html

➢ https://r4ds.had.co.nz/strings.html#matching-patterns-with-regular-expressions

➢ Cheat sheet: https://posit.co/wp-content/uploads/2022/10/strings-1.pdf

String Processing stringr regex

https://www.regular-expressions.info/tutorial.html
https://r4ds.had.co.nz/strings.html#matching-patterns-with-regular-expressions
https://posit.co/wp-content/uploads/2022/10/strings-1.pdf

19/34

String Processing Regular Expressions Strings as regex

Strings are a regex

Technically any string is a regex, perhaps the simplest example is a single character. So the comma , used in the
next code example is a simple example of searching with regex.

pattern <- ","

str_detect(c("1", "10", "100", "1,000", "10,000"), pattern)

[1] FALSE FALSE FALSE TRUE TRUE

Above, we noted that an entry included a cm. This is also a simple example of a regex. We can show all the
entries that used cm like this:

str_subset(reported_heights$height, "cm")

[1] "165cm" "170 cm"

String Processing stringr regex

20/34

Special characters

o The main feature that distinguishes the regex language from plain strings is that we can use special

characters.

o Now let’s consider a slightly more complicated example. Which of the following strings contain the pattern

cm or inches?

o We start by introducing | which means or

yes <- c("180 cm", "70 inches")

no <- c("180", "70''")

s <- c(yes, no)

str_detect(s, "cm|inches")

s[str_detect(s, "cm|inches")]

String Processing Regular Expressions Special Characters

String Processing stringr regex

21/34

Special characters

o Another special character that will be useful for identifying feet and inches values is \d which means any

digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

o The backslash is used to distinguish it from the character d. In R, we have to escape the backslash \ so we

actually have to use \\d to represent digits.

yes <- c("5", "6", "5'10", "5 feet", "4'11")

no <- c("", ".", "Five", "six")

s <- c(yes, no)

pattern <- "\\d"

str_detect(s, pattern)

s[str_detect(s, pattern)]

str_view(s, pattern)

str_view(s, pattern, match = NA)

String Processing Regular Expressions Special Characters

String Processing stringr regex

22/34

Character Classes

Character classes are used to define a series of characters that can be matched. We define character classes

with square brackets []. So, for example, if we want the pattern to match only if we have a 5 or a 6, we use the

regex [56]:

yes <- c("5", "6", "5'10", "5 feet", "4'11")

no <- c("", ".", "Five", "six")

s <- c(yes, no)

str_view(s, "[56]", match = NA)

str_view(s, "5|6", match = NA)

String Processing Regular Expressions Character Classes

String Processing stringr regex

23/34

Character Classes

Suppose we want to match values between 4 and 7. A common way to define character classes is with ranges.

So, for example, [0-9] is equivalent to \\d. The pattern we want is therefore [4-7].

yes <- as.character(4:7)

no <- as.character(1:3)

s <- c(yes, no)

str_detect(s, "[4-7]")

str_view(s, "[4-7]")

String Processing Regular Expressions Character Classes

String Processing stringr regex

24/34

Character Classes

o Keep in mind that characters do have an order and the digits do follow the numeric order. So 0 comes

before 1 which comes before 2 and so on. For the same reason, we can define lower case letters as [a-z],

upper case letters as [A-Z], and [a-zA-z] as both.

o Notice that \w is equivalent to [a-zA-Z0-9_].

(\w stands for word character and it matches any letter, number, or underscore)

String Processing Regular Expressions Character Classes

String Processing stringr regex

25/34

Bounded quantifiers

For the inches part, we can have one or two digits.

This can be specified in regex with quantifiers.

This is done by following the pattern with curly brackets containing the number of times the previous entry can

be repeated.

pattern <- "^\\d{1,2}$"

yes <- c("1", "5", "9", "12")

no <- c("123", "a4", "b")

str_view(c(yes, no), pattern, match = NA)

String Processing Regular Expressions Bounded Quantifiers

String Processing stringr regex

26/34

String Processing heigts data

Problematic patterns:

1. A pattern of the form x'y or x' y'' or x'y" with x and y representing feet and inches, respectively. Here

are ten examples:

#> 5' 4" 5'7 5'7" 5'3" 5'11 5'9'' 5'10'' 5' 10 5'5" 5'2"

2. A pattern of the form x.y or x,y with x feet and y inches. Here are ten examples:

#> 5.3 5.5 6.5 5.8 5.6 5,3 5.9 6,8 5.5 6.2

3. Entries that were reported in centimeters rather than inches. Here are ten examples:

#> 150 175 177 178 163 175 178 165 165 180

String Processing stringr regex

27/34

Case Study: Heights

With what we have learned, we can now construct an example for the pattern x'y" with x feet and y inches.

pattern <- "^[4-7]'\\d{1,2}\"$"

yes <- c("5'7\"", "6'2\"", "5'12\"")

no <- c("6,2\"", "6.2\"","I am 5'11\"", "3'2\"", "64")

str_detect(yes, pattern)

str_detect(no, pattern)

The pattern is now getting complex, but you can look at it carefully and break it down:

➢ ^ = start of the string

➢ [4-7] = one digit, either 4,5,6 or 7

➢ ' = feet symbol

➢ \\d{1,2} = one or two digits

➢ \" = inches symbol

➢ $ = end of the string

String Processing Regular Expressions Case Study: Heights

String Processing stringr regex

28/34

White Space

Another problem we have is spaces. For example, our pattern does not match 5' 4" because there is a space

between ' and 4 which our pattern does not permit.

identical("Hi", "Hi ")[1] FALSE

In regex, \s represents white space. To find patterns like 5' 4", we can change our pattern to:

pattern_2 <- "^[4-7]'\\s\\d{1,2}\"$"

str_subset(problems, pattern_2)

However, this will not match the patterns with no space. So do we need more than one regex pattern? It turns

out we can use a quantifier for this as well.

String Processing Regular Expressions White Space

String Processing stringr regex

29/34

Unbounded quantifiers: *, ?, +**

o We want the pattern to permit spaces but not require them. Even if there are several spaces, like in this

example 5' 4, we still want it to match. There is a quantifier for exactly this purpose.

o In regex, the character * means zero or more instances of the previous character. Here is an example:

yes <- c("AB", "A1B", "A11B", "A111B", "A1111B")

no <- c("A2B", "A21B")

str_detect(yes, "A1*B")

str_detect(no, "A1*B")

String Processing Regular Expressions Unbounded Quantifiers

String Processing stringr regex

30/34

Unbounded quantifiers: *, ?, +**

There are two other similar quantifiers.

➢ For none or once, we can use ?,

➢ for one or more, we can use +.

You can see how they differ with this example:

s <- c("AB", "A1B", "A11B", "A111B", "A1111B", "A2B", "A21B")

none_or_more <- str_detect(s, "A1*B")

nore_or_once <- str_detect(s, "A1?B")

once_or_more <- str_detect(s, "A1+B")

String Processing Regular Expressions Unbounded Quantifiers

String Processing stringr regex

31/34

Not Include

To specify patterns that we do not want to detect, we can use the ^ symbol but only inside square brackets. Remember that

outside the square bracket ^ means the start of the string. So, for example, if we want to detect digits that are preceded by

anything except a letter we can do the following:

pattern <- "[^a-zA-Z]\\d"

yes <- c(".3", "+2", "-0","*4")

no <- c("A3", "B2", "C0", "E4")

str_detect(yes, pattern)

str_detect(no, pattern)

String Processing Regular Expressions Not Include

String Processing stringr regex

32/34

Case Study: Heights → Search and Replace

Earlier we defined the object problems containing the strings that do not appear to be in inches. We can see that not too

many of our problematic strings match the pattern:

pattern <- "^[4-7]'\\d{1,2}\"$"

sum(str_detect(problems, pattern))

problems[c(2, 10, 11, 12, 15)] |> str_view(pattern, match = NA)

String Processing Regular Expressions Search and Replace

String Processing stringr regex

33/34

Case Study: Heights → Search and Replace

one problem is

str_subset(problems, "inches")

str_subset(problems, "''")

we will try to obtain format : x'y -> x feet, y inches

pattern <- "^[4-7]'\\d{1,2}$"

problems |>

str_replace("feet|ft|foot", "'") |> # replace feet, ft, foot with '

str_replace("inches|in|''|\"", "") |> # remove all inches symbols

str_detect(pattern) |>

sum()

String Processing Regular Expressions Search and Replace

String Processing stringr regex

34/34

Case Study: Heights → Search and Replace

another problem is the spaces: x’ y”

pattern <- "^[4-7]\\s*'\\s*\\d{1,2}$"

problems |>

str_replace("feet|ft|foot", "'") |> # replace feet, ft, foot with '

str_replace("inches|in|''|\"", "") |> # remove all inches symbols

str_detect(pattern) |>

sum()

String Processing Regular Expressions Search and Replace

String Processing stringr regex

35/34

Case study: extracting tables from a PDF

Task: Extract Table S1 of the given PDF as a data frame

https://web.archive.org/web/20150927033124/https://www.pnas.org/content/suppl/201

5/09/16/1510159112.DCSupplemental/pnas.201510159SI.pdf

String Processing Regular Expressions

String Processing stringr regex

https://web.archive.org/web/20150927033124/https:/www.pnas.org/content/suppl/2015/09/16/1510159112.DCSupplemental/pnas.201510159SI.pdf

36/34
String Processing stringr regex

String Processing stringr regex

