
EMU 430- Data Analytics 2023 – 2024 Fall

Hacettepe University
Department of Industrial Engineering

Undergraduate Program
2023-2024 Fall

EMU 430 – Data Analytics
Week2

October 13, 2023

Instructor: Erdi Dasdemir

edasdemir@hacettepe.edu.tr
www.erdidasdemir.com

mailto:edasdemir@hacettepe.edu.tr
http://www.erdidasdemir.com/

2/82

3/82

Outline

4/82
Installation Components of an R program R Basics Data Types

5/82

oR is the language itself and RStudio is the most popular integrated development

environment for R.

o Installation of R is sufficient to write programs on our computer. However, RStudio

provides a more enriched and user-friendly programming experience with many useful

tools.

Installing R and RStudio

Installation Components of an R program R Basics Data Types

6/82

To install R:

1. Go to https://www.r-project.org.

2. Select Download → CRAN from the left menu.

3. Choose a download location close to you.

4. Choose the download option for your operating system.

5. Choose base → Install R for the first time.

6. Download the most recent R version.

7. Run downloaded file for installation.

Installing R and RStudio R

Installation Components of an R program R Basics Data Types

https://www.r-project.org/

7/82

To install RStudio:

1. Go to https://posit.co.

2. Choose Download RStudio.

3. Choose RStudio Desktop → Download RStudio.

4. Download the option suitable for your operating system.

5. Run downloaded file for installation.

Installing R and RStudio RStudio

Installation Components of an R program R Basics Data Types

https://posit.co/

8/82

• '>' prompt. This is the R's way of asking you, "What do you want me to do

next?"

• We can communicate with our computer using the R language. All we need

is to learn to speak the R language

RStudio R Console

> Hi Computer. I don't have time to learn R language. Let's do it in English this time.

Please write Hello World to the screen.

Error: unexpected symbol in "Hi Computer."

> print("Hello World")

[1] "Hello World"

Installation Components of an R program R Basics Data Types

9/82

o We can store our code within scripts for easy editing later on, debug our code line-by-line, and make our

code callable from other scripts.

➢File > New File > R Script

➢Ctrl+S, File > Save

➢ It's best to use a descriptive name with lowercase letters and no spaces; you can use hyphens or

underscores to separate words. There are different views on using underscores (_) or hyphens (-) in word

separation. My suggestion is to be sure to be consistent with whatever you prefer.

RStudio Scripts

Installation Components of an R program R Basics Data Types

10/82

o When we run a script, we are essentially telling R to read and execute the commands in the file. The

extension for a script in R is “.R” just as Python has “.py”.

o The advantage of working in RStudio instead of R console is that you do not have to finish the script to

run it.

o In RStudio, you can run the part you have completed or even a single line.

o This allows you to construct the analytical model behind the program as you can check the results of

your computations during progress, and do debugging easily.

o RStudio highlights the syntax and provides better readability. If there are syntax problems, it will indicate

errors even without running the code.

RStudio Scripts

Installation Components of an R program R Basics Data Types

11/82

o Environment:

➢The top-right pane displays information about the

current R environment—specifically, information

that you have stored inside of variables.

➢You will often create dozens of variables within a

script, and the Environment pane helps you keep

track of which values you have stored in which

variables.

➢This is incredibly useful for “debugging” (identifying

and fixing errors)!

RStudio Environment

Installation Components of an R program R Basics Data Types

12/82

o The bottom-right pane contains multiple tabs for

accessing a variety of information about your program.

➢When you create visualizations, those plots will be

rendered in this section.

➢You can also see which packages you have loaded or look

up information about files.

➢You can access the official documentation for the R

language in this pane. If you ever have a question about

how something in R works, this is a good place to start!

RStudio Plots, Packages, etc.

Installation Components of an R program R Basics Data Types

13/82

o It is a Computer Science tradition to begin your first program by writing "Hello World" to the screen. To do this, open a new script
and save it as "first-program.R". Then, in the R console, enter the command:

> print("Hello World")

[1] "Hello World"

o We can calculate the age of the Turkish Republic by subtracting "year_established" from "year_now".

> year_now = 2023

> year_established = 1923

> age = year_now - year_established

> print(age)

[1] 100

Writing our First Program

Installation Components of an R program R Basics Data Types

14/82
Installation Components of an R program R Basics Data Types

15/82

oVocabulary

➢reserved words and identifiers make up the language's vocabulary

oLines

➢ we write our code line by line

oCode blocks

➢multiple lines that are related to each other form a cohesive and meaningful

sequence

Components of an R Program

Installation Components of an R program R Basics Data Types

16/82

oWhat is a reserved word?

➢predetermined and built into the language, so that the R parser understands them

➢R is smart enough to recognize that these words have a specific purpose, and whenever we use

them R always knows what we mean.

➢ It is important to note that these words cannot be used for any other purpose, such as variable

names.

Components of an R Program Vocabulary Reserved Words

Installation Components of an R program R Basics Data Types

17/82

Reserved words in R: https://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html

TRUE

FALSE

NULL

Inf

NaN

NA

NA_integer_

NA_real_

NA_complex_

NA_character_

if

else

repeat

while

function

for

in

next

break

Components of an R Program Vocabulary Reserved Words

Installation Components of an R program R Basics Data Types

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/TRUE.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/FALSE.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/NULL.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/Inf.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/NaN.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/NA.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/NA_integer_.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/NA_real_.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/NA_complex_.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/NA_character_.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/if.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/else.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/repeat.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/while.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/function.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/for.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/next.html
https://stat.ethz.ch/R-manual/R-devel/library/base/help/break.html

18/82

o Identify our variables, functions, and other objects by giving names to them.

o The names used for identification are not important to R, but they are meaningful to

human users to assist them in constructing their program.

oUse variable names that are mnemonic

o you will appreciate it when you start developing larger code blocks and debugging your
code to identify the root of errors

Components of an R Program Vocabulary Identifiers

year_now <- 2023
year_established <- 1923
age <- year_now - year_established
print(age)

x <- 2023
y <- 1923
z <- y - x print(z)

asdsadsad <- 2023
xyxyxyxyx <- 1923
ghnjmkj <- asdsadsad - xyxyxyxyx
print(ghnjmkj)

Installation Components of an R program R Basics Data Types

19/82

oMost programming-language communities have agreed-upon naming conventions,

which are sets of rules that govern how functions and variables should be named.

o This is not the case with R; a review of unofficial style guides and naming conventions

used on CRAN reveals that a number of different methods are in use.

o Some conventions are here, and as you will see, they differ greatly.

o Colin Gillespie’s R style guide: https://csgillespie.wordpress.com/2010/11/23/r-style-guide/

o Hadley Wickham’s style guide: http://stat405.had.co.nz/r-style.html

o Google: https://google.github.io/styleguide/Rguide.html

Components of an R Program Vocabulary Naming conventions

Installation Components of an R program R Basics Data Types

https://csgillespie.wordpress.com/2010/11/23/r-style-guide/
http://stat405.had.co.nz/r-style.html
https://google.github.io/styleguide/Rguide.html

20/82

oUltimately, it is up to you to decide which convention you prefer.

o I follow the Python naming convention, which differs from those commonly used for R.

My reasons for doing so are twofold: first, I write code in both languages, so it is easier

for me to read my code when switching between them; second, the Python naming

conventions are widely accepted and well-established

o You can see the official Python naming conventions here: https://peps.python.org/pep-

0008/

Components of an R Program Vocabulary Naming conventions

Installation Components of an R program R Basics Data Types

https://peps.python.org/pep-0008/

21/82

owhichever one you choose, select informative and mnemonic names for variables

o For example,

➢ I prefer to use “year_ie_hacettepe_established” over “year_ie_hac_est”

➢ “ myemu_db_student_info_df” is better for me than “myemu_db_ student_info”

Components of an R Program Vocabulary Naming conventions

Installation Components of an R program R Basics Data Types

22/82

o Use <- for assignments:

o Do not use dots (.) in your identifiers:

o R allows you to use "." in your variable names, but this is not a recommended or accepted practice in

other languages. If you continue working in data analytics, you'll likely eventually use Python; Python

does not permit the use of "." in variable names.

o Python is an object-oriented programming language, meaning that almost every entity is treated as

an object with attributes and methods. The dot (.) notation is used to access the attributes and

methods of an object.

o For example, for ie_hacettepe object in Python, and you may use

ie_hacettepe.establishment_year to access the year IE Hacettepe was established

Components of an R Program Vocabulary Naming conventions

Installation Components of an R program R Basics Data Types

23/82

oWhat is the difference between syntax and style?

➢Syntax describes the rules for writing the code so that a computer can interpret it.

➢Styles are optional conventions that make it easier for other humans to interpret your

code.

Components of an R Program Vocabulary Naming conventions

Installation Components of an R program R Basics Data Types

24/82

o We communicate with R line by line.

o In general, we should write our code line by line, except in obligatory cases.

o You may include multiple instructions on the same line of your script using additional punctuation, but

this is neither common nor a good programming practice

o Each line that can be executed by R is also called a Statement.

print(1)
[1] 1
x<-2
print(x)
[1] 2

Components of an R Program Lines

Installation Components of an R program R Basics Data Types

25/82

oA code block is connected and meaningful code pieces that are constructed by a set of

lines

o I expect a code block to perform a task

Components of an R Program Blocks

> year_now <- 2023
> year_established <- 1923
> age <- year_now - year_established

Installation Components of an R program R Basics Data Types

26/82

oDevelopers use comments to help write down the meaning and purpose of their code.

This is particularly important when someone else will be looking at your work.

o In R, you mark text as a comment by putting it after the pound symbol (#). Everything

from the # until the end of the line is a comment.

Including Comments

Installation Components of an R program R Basics Data Types

27/82
Installation Components of an R program R Basics Data Types

28/82

oVariables, values and types

o Functions

oArithmetic Operations

oRelational Operations

R Basics

Installation Components of an R program R Basics Data Types

29/82

o Variables are labels for information; in R, you can

think of them as “boxes” or “name tags” for data.

After putting data in a variable box, you can then

refer to that data by the label on the box.

oHow do you store information in a variable?

➢Using assignment operator <-

oHow do you display the value of a variable?

o Using print function

R Basics Variables

https://sidthakur3519.medium.com/variables-and-its-usage-7a7b32773880

Installation Components of an R program R Basics Data Types

https://sidthakur3519.medium.com/variables-and-its-usage-7a7b32773880

30/82

oVariable names

➢can be arbitrarily long.

➢can contain both letters and numbers

➢cannot start with a number.

o It is legal to use uppercase letters, but it is a good idea to begin variable names with a

lowercase letter.

o Is this a valid name?

o2008_hacettepe_endustri

2008_hacettepe_endustri <- 2008

Error: unexpected input in "2008_"

R Basics Variables

Installation Components of an R program R Basics Data Types

31/82

oA value is one of the basic things a program works with, like a letter or a number.

o Example: 2023 is an numeric “Hello World!” is a string.

1. Numeric

2. Integers

3. Characters

4. Logical

5. Complex

R Basics Values and Types

Installation Components of an R program R Basics Data Types

32/82

oR is a dynamically typed language, which means ??

o you do not need to explicitly state which type of information will be stored in each

variable you create.

o In statically typed languages, you need to declare the type of variable you want to

create. For example, in the Java programming language, you have to indicate the type

of variable you want to create: if you want the integer 10 to be stored in the variable

my_num, you would have to write int my_num = 10

R Basics Values and Types

Installation Components of an R program R Basics Data Types

33/82

Numeric

The default computational data type in R is numeric data

You can use mathematical operators on numeric data (+, -, *, /)

number <- 4

class(number)

[1] “numeric"

typeof(number)

[1] "double"

R Basics Values and Types Numeric

Double. This is probably the most common data type in the R
programming language. A variable or a series will be stored as
double if the value is numeric. This means that a value such as
“4” here, is stored as 4.00 with a type of double and a class of
numeric.

Installation Components of an R program R Basics Data Types

34/82

o integer (whole-number) values are technically a different data type than numeric

values because of how they are stored and manipulated by the R interpreter.

o This is something that you will rarely encounter, but it’s good to know that you can

specify that a number is of the integer type rather than the general numeric type.

my_integer <- 10L
class(my_integer)
1] "integer"
typeof(my_integer)
[1] "integer"

R Basics Values and Types Integers

my_integer <- as.integer(10)
class(my_integer)
1] "integer"
typeof(my_integer)
[1] "integer"

Installation Components of an R program R Basics Data Types

35/82

oCharacter data stores strings of characters (e.g., letters, special characters, numbers) in

a variable.

o You specify that information is character data by surrounding it with either single

quotes (') or double quotes (").

o the tidyverse style guide suggests always using double quotes.

class("Helllo World!")
[1] "character"

class("4")
[1] "character"

R Basics Values and Types Character

Installation Components of an R program R Basics Data Types

36/82

o Logical (boolean) data types store “yes-or-no” data.

oA logical value can be one of two values: TRUE or FALSE.

o Importantly, these are not the strings "TRUE" or "FALSE"; logical values are a

different type!

o If you prefer, you can use the shorthand T or F.

o Logical values are most commonly produced by applying a relational operator (also

called a comparison operator) to some other data.

logi <- FALSE
class(logi)
[1] "logical"
typeof(logi)
[1] "logical"

R Basics Values and Types Logical

Installation Components of an R program R Basics Data Types

37/82

R Basics Values and Types Logical

number_guitar_strings <- 6

number_mandolin_strings <- 8

Compare the number of strings on each instrument

number_guitar_strings > number_mandolin_strings # returns logical value FALSE

[1] FALSE

number_guitar_strings != number_mandolin_strings # returns logical value TRUE

[1] TRUE

Equivalently, you can compare values that are not stored in variables

6 == 8 # returns logical value FALSE

[1] FALSE

Use relational operators to compare two strings

"mandolin" > "guitar" # returns TRUE (m comes after g alphabetically)

[1] TRUE

Installation Components of an R program R Basics Data Types

38/82

oThe complex data type is to store numbers with an imaginary component.

Examples of complex values would be 1+2i, 3i, 4-5i, -12+6i, etc.

oWe will not be using complex numbers in this book, as they rarely are

important for data science.

complex_variable <- 2i
class(complex_variable)
[1] "complex" >
typeof(complex_variable)
[1] "complex"

R Basics Values and Types Complex

Installation Components of an R program R Basics Data Types

39/82

o A program that we code for a data analytics task almost always use a series of functions

o A function can be either defined by us or predefined in R’s defaults.

o Functions let us avoid writing the same code over and over again whenever we do the same task.

o Functions represent a way for you to add a label to a group of instructions.

Definition: functions represent a way for you to add a label to a group of instructions.

o We have already seen examples of function calls: class and typeof

R Basics Functions

number <- 4
class(number)
[1] “numeric"
typeof(number)
[1] "double"

Installation Components of an R program R Basics Data Types

40/82

o A function “takes” arguments and “returns” a result.

o The argument(parameter) is a value or variable that we are passing into the function as input to the

function.

o Lets write “sqrt() in R” to R’s help to see the details of this function

We can see that sqrt() requires only 1 argument, which is x, and x is the number or a set of numbers stored in

a vector that we want to take square root of.

R Basics Functions

help("sqrt")

?sqrt

args(sqrt)

Description

sqrt(x) computes the (principal) square root of x.

Arguments

x a numeric or complex vector or array.

Installation Components of an R program R Basics Data Types

http://127.0.0.1:13537/help/library/base/help/complex

41/82

Lets now look at log():

o Now, we see that log() requires two arguments. x is a must argument, and base is optional. If we do not define base

argument, then R will use the default base defined in the function, which is e, e.g. natural logarithm in this case.

o For example, log(20) + log(20, base=2), respectively, refer to ???

➢ ln(20) and 𝒍𝒐𝒈𝟐 𝟐𝟎 .

R Basics Functions

help("log")

?log

args(log)

Description

log computes logarithms, by default natural logarithms, log10 computes common (i.e., base
10) logarithms, and log2 computes binary (i.e., base 2) logarithms. The general form log(x,
base) computes logarithms with base base.

Arguments

x a numeric or complex vector.

base a positive or complex number: the base with respect to which logarithms are
computed. Defaults to e=exp(1).

Installation Components of an R program R Basics Data Types

42/82

Lets now look at log():

o log(x=20, base=2), log(20, base=2), log(20, 2), log(x=20,2), log(base=2,

x=20)

o All functions calls refers to the same tasks: find 𝒍𝒐𝒈𝟐 𝟐𝟎

o So you can either write argument names explicitly or simply write argument values in the same order they are

defined in function’s default (you may reach this information from the help).

➢ if you have argument names expilicitly, yo do not need to follow argument order

➢ if you are not using argument names, then order matters.

R Basics Functions

𝒍𝒐𝒈𝟐 𝟐𝟎

Installation Components of an R program R Basics Data Types

43/82

o I, personally, often try to explicitly write function arguments, to increase the readability

of my code (unless the function is too simple and takes only 1-2 arguments, like sqrt(x))

o In this way, when I return to my code after a long time, it becomes easier for me to

understand what the functions are doing. Otherwise, I had to go to their helps and

understand the arguments.

oAgain, this is just for human readability. For R, it does not matter whether you define the

argument names expilicitly or not.

R Basics Functions

Installation Components of an R program R Basics Data Types

44/82

Built-in (Base) Functions

o R provides a number of important built-in functions that we can use without needing to provide the function
definition.

o The developers of R wrote a set of functions to solve common problems and included them in R for us to use

o Examples:

R Basics Functions

print("Hello world")
[1] "Hello world"
sqrt(25)
[1] 5
min(1, 0.75, 1.25)
[1] 0.75
nchar('Hello world’)
[1] 11

R Reference Card: cheat sheet summarizing built-in R functions: https://cran.r-project.org/doc/contrib/Short-refcard.pdf

Installation Components of an R program R Basics Data Types

https://cran.r-project.org/doc/contrib/Short-refcard.pdf

45/82

Type Conversion Functions

oR also provides built-in functions that convert values from one type to another.

o Example:

R Basics Functions

user_number <- 1234

as.character(user_number)

[1] "1234"

user_character <- “1234”

as.numeric(user_character)

[1] 1234

Installation Components of an R program R Basics Data Types

46/82

To emphasize once again, we should follow the below steps when using a function:

1. Go help or google to find the arguments of the function.

2. See if a default value is assigned to an argument of a function. If a default value is

assigned, then the argument is optional. If no default is there, then you have to give this

argument to function to be able to run it.

3. Run the function with proper arguments.

R Basics Functions

Installation Components of an R program R Basics Data Types

47/82

o In addition to the defaults of R functions, there are tons of functions that are prebuilt in R

packages. From time to time, we will be using R packages in this course and call their

prebuilt functions.

o Example:

install.packages("stringr")

library("stringr")

str_count("Mississippi", "i") # 4

oWe can also define our own functions.

oWe will talk more about these next week.

R Basics Functions

stringr provides a function str_count() that returns how
many times a “substring” appears in a word

Installation Components of an R program R Basics Data Types

48/82

oR has 2 sets of functions that can be used without parentheses (). These are

arithmetic operators and relational operators.

➢Arithmetic operators

➢Relational operators.

R Basics Arithmetic and Relational Operations

Installation Components of an R program R Basics Data Types

49/82

Arithmetic Operators

help("+")

R Basics Arithmetic and Relational Operations

Installation Components of an R program R Basics Data Types

50/82

Some Arithmetic Operations

> (9/3) + (4*2) - (3^2) + sqrt(4)
[1] 4

The parentheses above are just for readability. We can simply remove them and R will handle the rest.

> 9/3 + 4*2 - (3^2) + sqrt(4)
[1] 4

> exp(2) + log(20) + log(20, base=2) + 14%%3
[1] 16.70672

R Basics Arithmetic and Relational Operations

Installation Components of an R program R Basics Data Types

51/82

Relational Operators

help(“<")

R Basics Arithmetic and Relational Operations

Installation Components of an R program R Basics Data Types

52/82
Installation Components of an R program R Basics Data Types

53/82

Data Frames

Vectors

Numeric

Character

Logical

Factors

R Data Types Data Frames

Installation Components of an R program R Basics Data Types

54/82

Motivating Case Study

Crime rates in the US.

Our classmate Baran is offered a job in a US company.
This company has many locations across all states.

It is a great job but Baran recently read news with the
headline “US Gun Homicide Rate Higher Than Other
Developed Countries”.

Baran is worried and considering declining the jobs but
then he wants to look at the data by himself.

He investigates how safe each state is.

R Data Types Case Study

Installation Components of an R program R Basics Data Types

55/82

Data frames

oMost common way of storing data in R

oConceptually, they are like tables where rows represent observations and columns represent
different variables.

o They are useful as we can store different data types into a single object

library(dslabs)
data(murders)
class(murders)
[1] "data.frame"

Our data is stored in the object murders, but how can we learn more about the “murder”
object????

R Data Types Data Frames

Installation Components of an R program R Basics Data Types

56/82

We can start with str function.

→Structure of an object

str(murders)

R Data Types Data Frames

Installation Components of an R program R Basics Data Types

57/82

We can also look at the first lines of the data frame with the head() function.

head(murders)

→Rows are the different observations, states

→The columns represent different variables (state, abbreviation, region, population, and total)

R Data Types Data Frames

Installation Components of an R program R Basics Data Types

58/82

Accessing the variables of the murders object: We use accessor, $.

murders$population

But how did we know that there is a variable column named “population” ???

→str() function

→names() function

names(murders)
[1] "state" "abb" "region" "population" "total"

R Data Types Data Frames

Installation Components of an R program R Basics Data Types

59/82

Important!

o The order of the entries in the list ‘murders$population’ preserves the order of the

rows in our data table.

o This will help us to manipulate one variable based on the results of another.

o For example, we can manipulate state names by the number of murders.

R Data Types Data Frames

Installation Components of an R program R Basics Data Types

60/82

oThe movielens dataset in the dslabs package includes
data on a variety of movies and their rating.

library(dslabs)

data(movielens)

How many rows are in the dataset?

How many different variables are in the dataset?

What is the variable type of title ?

R Data Types Data Frames

15
sec

Installation Components of an R program R Basics Data Types

61/82

murders$population

Note that the results is not a single value. It has 51 different values.

We call these types of objects ????
→ Vectors

pop <- murders$population
length(pop)
[1] 51
class(pop)
[1] numeric

Then pop is a numeric vector

R Data Types Vectors

Installation Components of an R program R Basics Data Types

62/82

We can also store characters into a vector in R → character vectors

We can also store logical into a vector in R → logical vectors

[1] TRUE FALSE FALSE FALSE TRUE

R Data Types Vectors

Installation Components of an R program R Basics Data Types

63/82

Vector:

o The most basic unit available in R to store data are vectors.

oComplex datasets can usually be broken down into components that are vectors.

o For example, in a data frame such as the murders data frame, each column is a vector.

R Data Types Vectors

Installation Components of an R program R Basics Data Types

64/82

How do we create a vector?

“c()” function → concatenate

codes <- c(380, 124, 818)

country <- c("italy", "canada", "egypt")

names(codes) <- country

print(codes)

or

codes<- c(italy=380, canada=124, egypt=818)

print(codes)

R Data Types Vectors

What is the general type of object codes? string or numeric?

Installation Components of an R program R Basics Data Types

65/82

Another way of creating vectors is using function sequence, seq().

seq(1, 10)

seq(1, 10, 2)

Or you can simply say

1:10

R Data Types Vectors

Installation Components of an R program R Basics Data Types

66/82

Subsetting: Accessing elements of a vector → use []

codes[2] → ?

canada

124

codes[c(1,3)] → ?

italy egypt

380 818

codes[1:2]→ ?

italy canada

380 124

R Data Types Vectors Subsetting

Accessing the entries with names
codes["canada"]

canada
124

codes[c("egypt", "italy")]

egypt italy

818 380

Installation Components of an R program R Basics Data Types

67/82

o Coercion: In general, coercion is an attempt by R to be flexible with data types.

o When an entry does not match the expected, R tries to guess what we meant before throwing in an

error. But this can also lead to confusion.

o Failing to understand coercion can drive programmers crazy when attempting to code in R, since it

behaves quite differently from most other languages.

R Data Types Vectors Coercion

Installation Components of an R program R Basics Data Types

68/82

Examples

x <- c(1, "Canada", 3)

x

[1] "1" "Canada" "3"

class(x)

[1] "character

Numbers are converted to character!!

We say “R Coerced the data into a character string.”

R Data Types Vectors Coercion

Installation Components of an R program R Basics Data Types

69/82

R also has built-in coercion functions.

x <- 1:5

y <- as.character(x)

y

[1] "1" "2" "3" "4" "5"

as.numeric(y)

[1] 1 2 3 4 5

R Data Types Vectors Coercion

These coercion functions are quite useful in practice
because many datasets that include numbers, include
them in a form that makes them appear to be character
strings!!!

Installation Components of an R program R Basics Data Types

70/82

o Missing data is very common in practice.

o In R, we have a special value for missing data: NA

o We can get NAs from coercion.

o For example, when R fails to coerce something, we will get NA.

o Example:

x<- c("1", "b", "3")

as.numeric(x)

[1] 1 NA 3

Warning message: NAs introduced by coercion

R Data Types Vectors Coercion

Installation Components of an R program R Basics Data Types

71/82

Rank states from least to most dangerous:

sort() → sorts a vector in increasing order

R Data Types Vectors Sorting

→What do you see here? Is this an enough information for you?

We only see totals, we don’t see state names

Installation Components of an R program R Basics Data Types

72/82

Rank states from least to most dangerous:

order() → it takes a vector and returns the indices that sorts that vector

Example:

x <- c(31, 4, 15, 92, 65)

X

[1] 31 4 15 92 65

sort(x)

[1] 4 15 31 65 92

index <- order(x)

index

[1] 2 3 1 5 4

x[index]

[1] 4 15 31 65 92

R Data Types Vectors Sorting

Installation Components of an R program R Basics Data Types

73/82

Now return back to murders data set:

R Data Types Vectors Sorting

Vermont has the lowest and California has the highest.

Installation Components of an R program R Basics Data Types

74/82

If we only want to see the state with the maximum murder number:

max() and min()

max(murders$total)

[1] 1257

which.max(murders$total)

[1] 5

murders$state[which.max(murders$total)]

[1] "California"

R Data Types Vectors Sorting

min(murders$total)

[1] 2

which.min(murders$total)

[1] 46

murders$state[which.min(murders$total)]

[1] "Vermont"

Installation Components of an R program R Basics Data Types

75/82

rank()

x <- c(31, 4, 15, 92, 65)

x

[1] 31 4 15 92 65

rank(x)

[1] 3 1 2 5 4

R Data Types Vectors Sorting

Installation Components of an R program R Basics Data Types

76/82

To summarize,

R Data Types Vectors Sorting
Indices starting with the
index of the smallest
element

Installation Components of an R program R Basics Data Types

77/82

So far, we have discovered that California has the most murders of any state.

Does this mean it is the most dangerous state????

➢ what if it has the highest population?

Find the state with the maximum population, use a single line code:

murders$state[which.max(murders$population)]

[1] "California"

R Data Types Vectors Vector Arithmetic

15
sec

Installation Components of an R program R Basics Data Types

78/82

max(murders$population)

[1] 37253956

o 37,253,956 → unfair to compare California to other states

o It is better to look at what?

➢murder rates per capita

R has powerful vector arithmetic capabilities:

→ arithmetic operations on vectors occur element-wise.

R Data Types Vectors Vector Arithmetic

Installation Components of an R program R Basics Data Types

79/82

Example:

heights <- c(69, 62, 66, 70, 70, 73, 67, 73, 67, 70) # inches

convert to centimeters

heights * 2.54

[1] 175.26 157.48 167.64 177.80 177.80 185.42 170.18 185.42 170.18 177.80

Assume that average height is 69 inches:

heights - 69

[1] 0 -7 -3 1 1 4 -2 4 -2 1

R Data Types Vectors Vector Arithmetic

Installation Components of an R program R Basics Data Types

80/82

R Data Types Vectors Vector Arithmetic

murder_rate <- (murders$total/murders$population)*100000

murders$state[order(murder_rate, decreasing=TRUE)]

Installation Components of an R program R Basics Data Types

81/82

o In the murders data set, we have a column called regions → which state in which region

o Normally, we can think that this would be a character but if we look at class

o Factors are useful for storing “categorical data”.

o Regions are categoric, there are 4 regions.

levels(murders$region)
[1] “Northeast” “South” “North Central” “West”

o Why do we use factors? Can’t we just use character type?
➢Saving categorical data this way is more memory efficient.

Note: I recommend avoiding factors as much as possible as they can be easily confused with character.

class(murders$region)
[1] factor

R Data Types Factors

Installation Components of an R program R Basics Data Types

