
EMU 430- Data Analytics 2023 – 2024 Fall

Hacettepe University
Department of Industrial Engineering

Undergraduate Program
2023-2024 Fall

EMU 430 – Data Analytics
Week 11

December 15, 2023

Instructor: Erdi Dasdemir

edasdemir@hacettepe.edu.tr
www.erdidasdemir.com

mailto:edasdemir@hacettepe.edu.tr
http://www.erdidasdemir.com/

2/65

Outline

3/65

Acknowledgment

I drew inspiration primarily from Dr. Rafael Irizarry's "Introduction to Data Science" Book

and "Data Science" course by HarvardX on edX for the slides this week.

https:/rafalab.dfci.harvard.edu/dsbook-part-1/
https://www.edx.org/certificates/professional-certificate/harvardx-data-science

5/65
Data

Wrangling
Importing tidy combining Web Scrapping rvest jsonlite httr2

6/65

Introduction to Data Wrangling

o Data wrangling is the process of converting raw data into a usable form.

o Data sets are not tidy in real life.

o import the data into R→ tidy up the data→ start analysis

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

7/65

We will learn about common data-wrangling proocess.

➢ importing data into R from files,

➢ tidying data,

➢ string processing,

➢ HTML parsing,

➢ working with dates and times, and

➢ text mining.

Introduction to Data Wrangling

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

8/65
Data

Wrangling
Importing tidy combining Web Scrapping rvest jsonlite httr2

9/65

Reading a file that is already on our computer.

o In R, it is important to know your working directory. This is the directory in which R will

save or look for files by default.

o Get your working directory

getwd()

o Change your working directory

setwd()

If you are using RStudio, Session –> Set Working Directory.

Importing Spreadsheets Paths and Working Directory

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

10/65

➢ Important: One thing file reading functions have in common is that unless a full path is

provided, they search for files in the working directory.

➢ Recommendation: Create a directory for each analysis and keep the raw data files in that

directory. To make it more organized, create a data directory (folder) inside your project

directory.

➢ Example. dslabs package has a raw data files as example. To find their locations:

system.file("extdata", package = "dslabs")

Importing Spreadsheets Paths and Working Directory

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

11/65

readr and readxl are the tidyverse libraries that include functions for reading data

stored in spreadsheets into R.

library(readr)

library(readxl)

Importing Spreadsheets readr and readxl packages

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

12/65

readr

Importing Spreadsheets readr and readxl packages

base R functions to import data

➢ read.table

➢ read.csv

➢ read.delim

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

13/65

readxl

Importing Spreadsheets readr and readxl packages

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

14/65

Importing Spreadsheets Download from Internet

We can import or download data files from web

url <-

"https://raw.githubusercontent.com/rafalab/dslabs/master/inst/extdata/murde

rs.csv"

To read murders.csv from web: dat <- read_csv(url)

To download a local copy and read it:

➢ download.file(url, "murders.csv")

➢ dat <- read_csv("murders.csv"))

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

15/65
Data

Wrangling
Importing tidy combining Web Scrapping rvest jsonlite httr2

16/65

tidy data: each row represents one observation and the columns represent the different variables that we

have data on for those observations.

Example: Remember South Korea and Germany example

Once the data is proper we can use our dplyr and ggplot functions easily.

data("gapminder")

tidy_data <- gapminder %>% filter(country %in% c("South Korea", "Germany")) %>%

select(country, year, fertility)

head(tidy_data)

tidy_data %>% ggplot(aes(year, fertility, color = country)) + geom_point()

tidy your data

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

17/65

Example, let’s go to the original raw version of this data file.

path <- system.file("extdata", package="dslabs")

filename <- file.path(path, "fertility-two-countries-example.csv")

wide_data <- read_csv(filename)

wide_data %>% select(country, '1960':'1967')

The data is in a wide format.

tidy your data

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

18/65

Wide Format (compared to Tidy format)

➢ each row includes several observations

➢ one of the variables is stored in the header

➢ ggplot does not work with wide format → we need to wrangle it to tidy format

➢ tidyr package (included in tidyverse library)

tidy your data

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

19/65

gather(): converts wide data into tidy data

help("gather")

➢ default version gathers all columns, therefore we need to specify the columns.

➢ we want to gather columns 1960 …. 2015

new_tidy_data <- wide_data %>% gather(key = year, value =

fertility,'1960':'2015')

new_tidy_data2 <- gather(data = wide_data, key = year, value =

fertility,'1960':'2015')

head(new_tidy_data)

tidy your data tidyr package

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

20/65

New Updates

1. pivot_longer() is an updated approach to gather(), designed to be both simpler to use

and to handle more use cases. We recommend you use pivot_longer() for new code;

gather() isn't going away but is no longer under active development.

2. R 4.1.0 introduced a native pipe operator, |>. The behaviour of the native pipe is by and large

the same as that of the %>% pipe provided by the magrittr package.

tidy your data

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

https://magrittr.tidyverse.org/reference/pipe.html

21/65

pivot_longer(): converts wide data into tidy data

help(“pivot_longer")

➢ we want to gather columns 1960 …. 2015

new_tidy_data <- wide_data |> pivot_longer('1960':'2015’, names_to =

“year”, values_to = “fertility”)

or

new_tidy_data <- wide_data |> pivot_longer(-country, names_to =

“year”, values_to = “fertility”)

head(new_tidy_data)

tidy your data tidyr package

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

22/65

here is another issue: pivot_longer function assumes column names are characters

class(tidy_data$year)

[1] "integer"

class(new_tidy_data$year)

[1] "character“

we can use as.numeric() but gather as an argument for this.

new_tidy_data <- wide_data |> pivot_longer(-country, names_to = “year”,

values_to = “fertility”) |> mutate(year = as.integer(year))

head(new_tidy_data)

tidy your data tidyr package

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

23/65

spread() function

inverse of gather()

help(spread)

new_wide_data <- new_tidy_data %>% spread(key = year, value = fertility)

select(new_wide_data, country, '1960':'1967')

tidy your data tidyr package

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

24/65

pivot_wider() function

inverse of gather()

help(spread)

new_wide_data <- new_tidy_data |> spread(names_from = year, values_from =

fertility)

select(new_wide_data, country, '1960':'1967')

tidy your data tidyr package

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

25/65

tidy your data tidyr package

https://raw.githubusercontent.com/rstudio/cheatsheets/main/tidyr.pdf

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

https://raw.githubusercontent.com/rstudio/cheatsheets/main/tidyr.pdf

26/65

path <- system.file("extdata", package="dslabs")

filename <- file.path(path, "life-expectancy-and-fertility-two-countries-

example.csv")

raw_dat <- read_csv(filename)

select(raw_dat, 1:5)

We will not use column name “year” as the new column name as they also include type information.

dat <- raw_dat %>% pivot_longer(-country)

head(dat)

Encoding multiple variables in a column name is a common problem. Hence, readr() has a function for
this: separate()

dat %>% separate_wider_delim(name, delim = "_", names =

"year","name"), too_many = “merge")

tidy your data Example Case

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

27/65

Convert to wide format:

dat %>% pivot_wider() # creaates column for each variable

tidy your data Example Case

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

28/65
Data

Wrangling
Importing tidy combining Web Scrapping rvest jsonlite httr2

29/65

Combining Tables

We may have multiple data files.

Example: We want to investigate the relationship between population and electoral votes. These are in different

data sets.

data(murders)

head(murders)

results_us_election_2016

murders

The order of states is different in the two tables. We cannot simply put them together using column binding.

identical(results_us_election_2016$state, murders$state)

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

30/65

Combining Tables join functions

These are functions from dplyr package:

based on SQL joins.

left_join

help("left_join")

tab <- left_join(murders,

results_us_election_2016, by =

"state")

head(tab)

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

31/65

Combining Tables join functions

We can now make a plot to see the relationship

library(ggrepel)

tab %>% ggplot(aes(population/10^6,

electoral_votes, label = abb)) +

geom_point() + geom_text_repel() +

scale_x_continuous(trans = "log2") +

scale_y_continuous(trans = "log2") +

geom_smooth(method = "lm", se = FALSE)

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

32/65

Combining Tables join functions

o In real-life, it is not always the case that each row in one table has a matching row in the
other.

Example:

results_us_election_2016 <- results_us_election_2016 %>%

arrange(state)

tab1 <- slice(murders, 1:6) %>% select(state, population)

tab1

tab2 <- slice(results_us_election_2016, c(1:3, 5, 7:8)) %>%

select(state, electoral_votes)

tab2

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

33/65

Combining Tables join functions

left join

left_join(tab1, tab2)

right join

right_join(tab1, tab2)

keep only the rows that have

information in both tables

inner join

inner_join(tab1, tab2) # intersection

keep all rows and assign NAs

full_join(tab1, tab2)

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

34/65

Combining Tables join functions

semi_join keeps the part of the

first table for which we have

information in the second.

semi_join(tab1, tab2)

anti_join keeps the part of first

table for which we have no information

in the second.

anti_join(tab1, tab2)

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

35/65

Combining Tables join functions

Data Wrangling with dplyr
and tidyr Cheat Sheet

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

36/65

Combining Tables binding functions

dplyr has bind_cols(): binds two objects by putting the columns of each
together in a tibble

bind_cols(a = 1:3, b = 4:6)

cbind(a = 1:3, b = 4:6)

default R column binding creates objects (data frames) rather than tibbles.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

37/65

Combining Tables binding functions

We can bind data frames too

tab1 <- tab[, 1:3]

tab2 <- tab[, 4:6]

tab3 <- tab[, 7:9]

new_tab <-

bind_cols(tab1, tab2,

tab3)

head(new_tab)

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

38/65

Combining Tables binding functions

bind_rows() is similar but binds

rows

tab1 <- tab[1:2,]

tab2 <- tab[3:4,]

bind_rows(tab1, tab2)

rbind(tab1, tab2)

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

39/65

Combining Tables set functions

tab1 <- tab[1:5,]

tab2 <- tab[3:7,]

intersect(tab1, tab2) #

intersecting rows

tab1 <- tab[1:5,]

tab2 <- tab[3:7,]

union(tab1, tab2) # union

rows

tab1 <- tab[1:5,]

tab2 <- tab[3:7,]

setdiff(tab1, tab2) #

setdiff()

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

40/65

Combining Tables set functions

v1 <- c(1:5)

v2 <- c(5:1)

v3 <- c(1:6)

setequal(v1, v2)

TRUE

setequal(v1, v3)

FALSE

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

41/65
Data

Wrangling
Importing tidy combining Web Scrapping rvest jsonlite httr2

42/65

Web Scrapping

o The data we need to answer questions are not always in a spreadsheet ready for us to read.

o For example, the US murders data set orinally came from this Wikipedia page:

o Wikipedia Page: Murder in the United States by state

o Web scraping or web harvesting are the terms used to describe the process of extracting data from a

website.

o We can do this is because the information from web pages to our browsers are received as text from a server.

.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

https://en.wikipedia.org/w/index.php?title=Gun_violence_in_the_United_States_by_state&direction=prev&oldid=810166167

43/65

Web Scrapping

o A webpage is a computer code written in HyperText Markup Language or HTML.

o To see the code for a web page, you can actually visit the page on your browser and then view the code.

o Different browsers have different ways of doing this. In Chrome you can click on View Source to see it.

o Because the code is accessible, we can download the HTML files, import it into R, and then write programs to

extract the information we need from the page.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

44/65

Web Scrapping

o Once we look at HTML code, this might seem like a difficult task.

o Fortunately, there are convenient tools to facilitate the process.

o Lets look at the source code and search Alabama.

o We can see the data and the pattern that the data is defined with.

o If you know HTML, you know what these patterns are, and you can leverage this knowledge to extract what
we need.

o We can also take advantage of a language widely used to make web pages look pretty called Cascading Style
Sheets, or CSS.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

45/65

Web Scrapping

o Although we will learn about the tools that make it possible to scrape data without knowing HTML, for data

scientists, it is quite useful to learn some HTML and some CSS.

o Useful courses for web design and development

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

https://www.erdidasdemir.com/tutorials/letter-to-ie-students-interested-in-data-science/

46/65
Data

Wrangling
Importing tidy combining Web Scrapping rvest jsonlite httr2

47/65

Web Scrapping rvest package

o We will use rvest package for web scraping.

o It is part of the tidyverse.

o The first step using this package is to import the web page into R:

library(rvest)

url <-

"https://en.wikipedia.org/w/index.php?title=Gun_violence_in_the_United_Stat

es_by_state&direction=prev&oldid=810166167"

data_html <- read_html(url)

class(data_html)

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

48/65

Web Scrapping rvest package XML

XML: General Markup Language

o The rvest package is actually more general. It handles XML documents, not just HTML documents.

o XML can be used to represent any kind of data.

o HTML is a specific type of XML, specifically developed for representing web pages.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

49/65

Web Scrapping rvest package

Extracting Information

o We know that the information is store in an HTML table (refer to source code).

o In HTML, information is stored inside nodes < >

For example,

o <td> 348 </td>

o <p>Hi, I’m Aykut. I’m third year Industrial Engineering Student

at Hacettepe University.</p>

o rvest package has functions to extract nodes from HTML documents.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

50/65

Web Scrapping Extracting Information

o We know that the information is store in an HTML table (refer to source code).

o In HTML, information is stored inside nodes < >

For example,

o <td> 348 </td>

o <p>Hi, I’m Aykut. I’m third year Industrial Engineering Student

at Hacettepe University.</p>

o rvest package has functions to extract nodes from HTML documents.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

51/65

Web Scrapping CSS Selectors

o The default look of a webpage made with the most basic HTML is quite unattractive.

o The aesthetically pleasing pages we see today are made using CSS

o The general way these CSS files work is by defining how each of the elements of a
webpage will look.

o CSS does this by leveraging patterns used to define these elements, referred to
as selectors. An example of such a pattern, which we used above, is table, but there are
many, many more.

o If we want to grab data from a webpage and we happen to know a selector that is unique
to the part of the page containing this data, we can use the html_nodes function.

o However, knowing which selector can be quite complicated.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

52/65

Web Scrapping CSS Selectors

o SelectorGadget is piece of software that allows you to interactively determine what CSS selector you need

to extract specific components from the webpage.

o A Chrome extension is available which permits you to turn on the gadget and then, as you click through the

page, it highlights parts and shows you the selector you need to extract these parts.

Demos:

o https://rvest.tidyverse.org/articles/selectorgadget.html

o https://www.analyticsvidhya.com/blog/2017/03/beginners-guide-on-web-scraping-in-r-using-rvest-with-

hands-on-knowledge/

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

https://rvest.tidyverse.org/articles/selectorgadget.html
https://www.analyticsvidhya.com/blog/2017/03/beginners-guide-on-web-scraping-in-r-using-rvest-with-hands-on-knowledge/

53/65

Web Scrapping

library(rvest)

url <-

"https://en.wikipedia.org/w/index.php?title=Gun_violence_in_the_United_Stat

es_by_state&direction=prev&oldid=810166167"

data_html <- read_html(url)

class(data_html)

tab <- data_html |> html_nodes("table")

tab <- tab[[1]] |> html_table()

tab <- tab |> setNames(c("state", "population", "total", "murder_rate"))

head(tab)

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

54/65
Data

Wrangling
Importing tidy combining Web Scrapping rvest jsonlite httr2

55/65

Web Scrapping JSON

o Sharing data on the internet has become more and more

common.

o There are some standards that are also becoming more common.

o Currently, a format that is widely being adopted is the JavaScript

Object Notation or JSON.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

56/65

Web Scrapping JSON

jsonlite package

We can use the function fromJSON from the jsonlite package to read JSON files.

Note that JSON files are often made available via the internet.

Several organizations provide a JSON API or a web service that you can connect directly to and obtain data.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

57/65

Web Scrapping JSON

jsonlite package

Here is an example providing information Nobel prize winners:

library(jsonlite)

library(dplyr)

nobel <- fromJSON("http://api.nobelprize.org/v1/prize.json")

nobel$prizes %>% .$category

nobel$prizes %>% .$year

nobel$prizes %>% filter(category == "literature" & year == "1971") %>%

pull(laureates) %>% first() %>% select(id, firstname, surname)

id firstname surname

You can learn much more by examining tutorials and help files for jsonlite and rjason packages.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

58/65
Data

Wrangling
Importing tidy combining Web Scrapping rvest jsonlite httr2

59/65

Web Scrapping Data APIs

o An Application Programming Interface (API) is a set of rules and protocols that allows

different software entities to communicate with each other.

o It defines methods and data formats that software components should use when

requesting and exchanging information.

o APIs play a crucial role in enabling the integration that make today’s software so

interconnected and versatile.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

60/65

Web Scrapping Data APIs

o There are several types of APIs. The main ones related to retrieving data are:

➢ Web Services - Often built using protocols like HTTP/HTTPS. Commonly used to enable applications to communicate with

each other over the web. For instance, a weather application for a smartphone may use a web API to request weather

data from a remote server.

➢ Database APIs - Enable communication between an application and a database, SQL-based calls for example.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

61/65

Web Scrapping Data APIs

Key concepts associated with APIs:

➢ Endpoints: Specific functions available through the API. For web APIs, an endpoint is usually a specific URL where the API

can be accessed.

➢ Methods: Actions that can be performed. In web APIs, these often correspond to HTTP methods like GET, POST, PUT, or

DELETE.

➢ Requests and Responses: The act of asking the API to perform its function is a request. The data it returns is the response.

➢ Rate Limits: Restrictions on how often you can call the API, often used to prevent abuse or overloading of the service.

➢ Authentication and Authorization: Mechanisms to ensure that only approved users or applications can use the API.

Common methods include API keys, OAuth, or Jason Web Tokens (JWT).

➢ Data Formats: Many web APIs exchange data in a specific format, often JSON or CSV.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

62/65

Web Scrapping httr2 package

o HTTP: Hyper-Text Transfer Protocol

➢ HTTP is the most widely used protocol for data sharing through the internet.

➢ The httr2 package provides functions to work with HTTP requests.

➢ One of the core functions in this package is request, which is used to form request to send to web services.

➢ The req_perform function sends the request.

➢ This request function forms an HTTP GET request to the specified URL.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

63/65

Web Scrapping httr2 package

o HTTP: Hyper-Text Transfer Protocol

➢ Typically, HTTP GET requests are used to retrieve information from a server based on the provided URL.

➢ The function returns an object of class response.

➢ This object contains all the details of the server’s response, including status code, headers, and content.

➢ You can then use other httr2 functions to extract or interpret information from this response.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

64/65

Web Scrapping httr2 package

Example:
Let’s say you want to retrieve COVID-19 deaths by state from the CDC. By visiting their data catalog you can search for datasets
and find that the data is provided through this API:

https://data.cdc.gov/

install.packages("httr2")

library(httr2)

library(readr)

library(jsonlite)

url <- "https://data.cdc.gov/resource/r8kw-7aab.json"

response <- request(url) |> req_perform()

tab <- response |> resp_body_string() |> fromJSON(flatten=TRUE)

increase return limit

response <- request(url) |> req_url_path_append("?$limit=100000") |> req_perform()

tab <- response |> resp_body_string() |> fromJSON(flatten = TRUE)

When working with APIs, it’s essential to check the API’s documentation for rate limits, required headers, or authentication
methods.
The httr2package provides tools to handle these requirements, such as setting headers or authentication parameters.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

https://data.cdc.gov/

65/65

Web Scrapping httr2 package

o When working with APIs, it’s essential to check the API’s documentation for rate limits,

required headers, or authentication methods.

o The httr2 package provides tools to handle these requirements, such as setting headers

or authentication parameters.

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

Data
Wrangling

Importing tidy combining Web Scrapping rvest jsonlite httr2

