
EMU 430- Data Analytics 2023 – 2024 Fall

Hacettepe University
Department of Industrial Engineering

Undergraduate Program
2023-2024 Fall

EMU 430 – Data Analytics
Week3

October 20, 2023

Instructor: Erdi Dasdemir

edasdemir@hacettepe.edu.tr
www.erdidasdemir.com

mailto:edasdemir@hacettepe.edu.tr
http://www.erdidasdemir.com/

2/32

3/32

oWe learn R because it greatly facilitates data analysis and implementation of analytical

approaches.

oHowever, R is not just a data analysis environment, but a programming language.

oAdvanced R programmers can develop user applications and perform other complex

programming tasks.

Programming Basics

4/32

o Three fundamental programming concepts:

➢conditional execution,

➢ iteration,

➢and creating functions.

o These are not only foundational elements of computer programming but are frequently useful

in the context of data analysis.

Programming Basics

5/32

Outline

6/32
Conditional Execution Functions Iterations

7/32

Logical (boolean) expressions

oA logical (boolean) expression is an expression that is either true or false.

430 == 430

[1] TRUE

430 == 679

[1] FALSE

Programming Basics Conditional Execution

Conditional Execution Functions Iterations

8/32

Comparison Operators

x == y # x is equal to y

x != y # x is not equal to y

x > y # x is greater than y

x < y # x is less than y

x >= y # x is greater than or equal to y

x <= y # x is less than or equal to y

Programming Basics Conditional Execution

Conditional Execution Functions Iterations

9/32

Logical Operators

& (and), |(or), !(not)

X <- 500

x > 430 & x < 679

[1] TRUE

x <- 300

x > 430 & x < 679

[1] FALSE

Programming Basics Conditional Execution

Conditional Execution Functions Iterations

10/32

General form:

Programming Basics Conditional Execution

if (boolean condition) {

expressions

} else {

alternative expressions

}

Conditional Execution Functions Iterations

11/32

Conditional statements

Programming Basics Conditional Execution

x <- 430

if (x > 0) {
print("x is positive")

}

if (x > 0) {print("x is positive")}

if (x > 0)
print("x is positive")

if (x > 0)
print("x is positive")

x > 0

print(“x is positive”)

Yes
my recommended format

Conditional Execution Functions Iterations

12/32

Alternative Execution

Programming Basics Conditional Execution

x <- 430

if (x %% 2 == 0) {
print("x is even")

} else {
print("x is odd")

}

x %%2 ==0

print(“x is even”)

YesNo

print(“x is odd”)

Conditional Execution Functions Iterations

13/32

Chained Conditionals

Programming Basics Conditional Execution

if (x < y) {
print("x is less than y")

} else if (x > y) {
print("x is greater than y")

} else {
print("x and y are equal")

}

x < y print(“x is less than y”)
Yes

x > y

Yes
print(“x is greater than y”)

print(“equal”)

No

No

Conditional Execution Functions Iterations

14/32

Nested Conditionals

Programming Basics Conditional Execution

if (x == y) {
print("x and y are equal")

} else {
if (x < y) {

print("x is less than y")
} else {
print("x is greater than y")

}
}

x == y
No

print(“equal”)

x > y

print(“less”) print(“greater”)Yes

YesNo

Conditional Execution Functions Iterations

15/32

Nested Conditionals

Programming Basics Conditional Execution

if (0 < x){
if (x < 10) {

print("x is a positive single-digit number")
}

}

if (0 < x & x < 10) {
print("x is a positive single-digit number")

}

Conditional Execution Functions Iterations

16/32

Nested Conditionals

Programming Basics Conditional Execution

if (0 < x){
if (x < 10) {

print("x is a positive single-digit number")
}

}

if (0 < x & x < 10) {
print("x is a positive single-digit number")

}

Conditional Execution Functions Iterations

17/32

Murders Data Set

Programming Basics Conditional Execution Implementation

library(dslabs)

data(murders)

murder_rate <- (murders$total/murders$population)*100000

20
sec

If the murder rate of the state with the lowest murder rate is lower than 0.5,

print the name of that state.

ind <- which.min(murder_rate)

if (murder_rate[ind] < 0.5) {

print (murders$state[ind])

} else {

print("No state has murder rate that low")

}

Output: [1] Vermont

Conditional Execution Functions Iterations

18/32

Murders Data Set

If we change the threshold level to 0.25

Programming Basics Conditional Execution Implementation

ind <- which.min(murder_rate)

if (murder_rate[ind] < 0.25) {

print (murders$state[ind])

} else {

print("No state has murder rate that low")

}

Output: [1] “No state has murder rate that low”

Conditional Execution Functions Iterations

19/32

ifelse statement

Programming Basics Conditional Execution

a <- 0

ifelse(a > 0, 1/a, NA)

Output: [1] NA

a <- 5

ifelse(a > 0, 1/a, NA)

Output: [1] 0.2

ifelse is particularly useful because it works with vectors.

Conditional Execution Functions Iterations

20/32

ifelse statement with vectors

Programming Basics Conditional Execution

a <- c(0, 1, 2, -4, 5)

ifelse(a > 0, 1/a, NA)

Output: [1] NA 1.0 0.5 NA 0.2

A common usage of ifelse is replacing NAs with some other value.

data(na_example)

sum(is.na(na_example)) # there are 145 Nas

Output: [1] 145

convert na_example to a vector that does not have any Nas

no_nas <- ifelse(is.na(na_example), 0, na_example) # note that the last argument is also a vector

sum(is.na(no_nas))

Output: [1] 0

Conditional Execution Functions Iterations

21/32

any and all functions

Programming Basics Conditional Execution

any function takes a vector of logical and returns if any element is true

z <- c(TRUE, TRUE, TRUE)

any(z) → Output: [1] TRUE

all(z) → Output: [1] TRUE

z <- c(TRUE, TRUE, FALSE)

any(z) → Output: [1] TRUE

all(z) → Output: [1] FALSE

Conditional Execution Functions Iterations

22/32
Conditional Execution Functions Iterations

23/32

o Perform the same operations over and over.

o Example:

You compute the average all the time when you are doing data science

sum(x) / length(x)

Write a function that does this calculation:

mean() already exists.

o In many situations, the function that you need is not defined.→ You have to write your own.

avg <- function(x){

s <- sum(x)

n <- length(x)

s/n

}

Programming Basics Functions

x <- 1:100
avg(x)
[1] 50.5

identical(mean(x), avg(x))
[1] TRUE

Conditional Execution Functions Iterations

24/32

oGeneral form:

Programming Basics Functions

my_function <- function(x, y, z) {

operations that operate on x, y, z, which are defined by the user

when they call this function.

}

➢ Functions are objects, so we assign them to variable names.

➢ Define a function that does arithmetic or geometric mean calculation

avg <- function(x, arithmetic = TRUE){

n <- length(x)

ifelse(arithmetic, sum(x)/n, prod(x)^(1/n))

}

Conditional Execution Functions Iterations

25/32

o Lexical Scope:

o Variables defined inside a function are not saved in the workspace.

Programming Basics Functions

avg <- function(x){
s <- sum(x)
n <- length(x)
s/n

}

s <- 3
avg(1:10)
S
Output:[1] 3

Inside the function, an s is created that is not 3, it is something else.
But that only happens inside the function.

Conditional Execution Functions Iterations

26/32

o Return Value

Programming Basics Functions

Version 1: A function to calculate the area of a rectangle

calculate_rect_area <- function(width, height){

return(width * height) # return a specific result

}

Version 2: A function to calculate the area of a rectangle

calculate_rect_area <- function(width, height){

width * height # return a specific result

}

Version 3: A function to calculate the area of a rectangle

calculate_rect_area <- function(width, height){

area <- width * height # calculate area

area

}
Conditional Execution Functions Iterations

27/32

o Debugging Functions

Programming Basics Functions

Version 3: A function to calculate the area of a rectangle

calculate_rect_area <- function(width, height){

area <- width * height # calculate area

area

}

assign sample values to your arguments, and then run through the function line by line.

Conditional Execution Functions Iterations

28/32
Conditional Execution Functions Iterations

29/32

ofor-loops

Programming Basics Iterations

for (i in range of values) {

operations that use i, which is changing across the

range of values

}

Conditional Execution Functions Iterations

30/32

o Example

Programming Basics Iterations

1 + 2 + …+ 𝑛 =
𝑛(𝑛 + 1)

2

We want to do this calculation for 𝑛 = 1, 2, … , 25

1. Define a function:

compute_s_n <- function(n){

x <- 1:n

sum(x)

}

compute_s_n(3)

[1] 6

compute_s_n(100)

[1] 5050

2. calculation for 𝒏 = 𝟏, 𝟐,… , 𝟐𝟓

m <- 25

create an empty vector

s_n <- vector(length = m)

for (i in 1:m){

s_n[i] <- compute_s_n(i)

}

n <- 1:m

plot(n, s_n)

lines(n, n*(n+1)/2)
Conditional Execution Functions Iterations

31/32

Programming Basics Iterations

We normally rarely use for loops in R

R functions:

apply

sapply

lapply

tapply

mapply

sapply(1:m, compute_s_n)

m <- 25

create an empty vector

s_n <- vector(length = m)

for (i in 1:m){

s_n[i] <- compute_s_n(i)

}

Conditional Execution Functions Iterations

32/32

owhile

Programming Basics Iterations

n <- 430
while (n > 0){

print(n)
n <- n - 50

}

[1] 430
[1] 380
[1] 330
[1] 280
[1] 230
[1] 180
[1] 130
[1] 80
[1] 30

Conditional Execution Functions Iterations

Conditional Execution Functions Iterations

